
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Three topics in the theory of computing: Multi-
resolution cellular automata, the Kolmogorov
complexity characterization of regular languages,
and hidden variables in Bayesian networks
Brian Patterson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Patterson, Brian, "Three topics in the theory of computing: Multi-resolution cellular automata, the Kolmogorov complexity
characterization of regular languages, and hidden variables in Bayesian networks" (2011). Graduate Theses and Dissertations. 10201.
https://lib.dr.iastate.edu/etd/10201

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10201?utm_source=lib.dr.iastate.edu%2Fetd%2F10201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Three topics in the theory of computing:

Multi-resolution cellular automata, the Kolmogorov complexity

characterization of regular languages, and hidden variables in Bayesian

networks

by

Brian Patterson

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

James I. Lathrop, Co-major Professor

Jack H. Lutz, Co-major Professor

Alicia L. Carriquiry

Vasant Honavar

Timothy McNicholl

Jin Tian

Iowa State University

Ames, Iowa

2011

Copyright c© Brian Patterson, 2011. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my parents, Barb and Jim Patterson, without whose

support I would not have been able to complete this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . x

CHAPTER 1. INTRODUCTION . 1

1.1 Multi-Resolution Cellular Automata and Computable Analysis 2

1.2 An MRCA Simulator . 6

1.3 Kolmogorov Complexity and Regular Languages 7

1.4 Essential Hidden Variables in Bayesian Networks 9

CHAPTER 2. PRELIMINARIES . 11

CHAPTER 3. MULTI-RESOLUTION CELLULAR AUTOMATA AND

COMPUTABLE ANALYSIS . 14

3.1 Real Computation and Small Boundaries . 14

3.2 Introduction to MRCAs . 21

3.3 MRCA Characterization of Computability 31

3.4 MRCA Characterization of Polynomial-time Computability 42

3.5 Similar Work to the MRCA . 50

CHAPTER 4. MULTI-RESOLUTION CELLULAR AUTOMATA SIMU-

LATION . 53

4.1 Introduction to the MRCA Simulator . 53

www.manaraa.com

iv

4.1.1 Simulator Interface . 53

4.1.2 Simulator Rule File Format . 56

4.2 Computing Sets with the MRCA Simulator 60

4.2.1 Requirements on the Input CA . 60

4.2.2 Changes to Generate A Computational Unit 61

4.2.3 Additional Rules to Complete the Construction 63

4.2.4 Simplifications for Halting Input CAs 65

4.3 An Example of MRCA Computation . 67

4.3.1 Input One-dimensional CA . 67

4.3.2 Rotation and Coloring . 72

4.3.3 Fission and Creation of Child Pinwheels of Computational Units . . . 75

4.4 In-Place MRCA Computation . 80

CHAPTER 5. KOLMOGOROV COMPLEXITY AND REGULAR LAN-

GUAGES . 91

5.1 Kolmogorov Complexity Results . 91

5.2 The Regularity Theorem . 98

5.3 Usage Examples . 106

5.4 Comparison with Pumping Lemmas . 107

CHAPTER 6. ESSENTIAL HIDDEN VARIABLES IN BAYESIAN NET-

WORKS . 112

6.1 Motivating Example . 113

6.2 Bayesian Network Notation . 114

6.2.1 Basic Graph Terminology . 115

6.2.2 Independence Notation . 116

6.2.3 Bayesian Network Formalisms . 116

6.2.4 Hidden Variables . 118

www.manaraa.com

v

6.3 An Algorithm for Detecting Essential Hidden Variables 122

6.3.1 Overview of the Algorithm . 122

6.3.2 Optimizations . 124

6.3.3 Experimental Results . 130

6.3.4 Integration of Results with Previous Research 134

6.3.5 Conclusions Based on the EHV Detection Algorithms 135

APPENDIX A. MRCA Simulator . 136

APPENDIX B. MRCA Construction Rules for Y > X2 137

APPENDIX C. Computation of In-Place MRCA Rules for Rational Lines 138

BIBLIOGRAPHY . 139

www.manaraa.com

vi

LIST OF TABLES

Table 6.1 Independences present in the Bayesian network appearing in Fig-

ure 6.2(a). 118

Table 6.2 Complete list of independences in the Bayesian network appearing in

Figure 6.3. 123

Table 6.3 Average Running Time of EHV Detection Algorithms (seconds). . . 133

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 An example of a ball that is inside a set X so f(q, n) = 1. 4

Figure 1.2 An example of a ball that is outside a set X so f(q, n) = 0. 4

Figure 1.3 An example of some balls that are in neither case so f(q, n) can be 0

or 1. 5

Figure 3.1 An example nowhere dense set X. 15

Figure 3.2 The Turing-gapped comb (appearing in blue). 19

Figure 3.3 Tree and physical representation of a configuration γ. 26

Figure 3.4
∞⋃
n=1

Q

(
2n,

4n − 4

3
, 0

)
colored in. 31

Figure 3.5 Use and creation of space for Turing machine computation by “falling

down a rabbit hole.” . 34

Figure 3.6 Initial CM(Q(0, 0, 0)) computational unit pinwheel. 36

Figure 3.7 Example complete initial state of CM(Q(1, 0, 0)) 37

Figure 3.8 Layout of child computational units of CM(Q(n, i, j)). 39

Figure 3.9 Example coloring of a dyadic square. 40

Figure 3.10 Initial configuration of the right computational unit CM(Q(1, 0, 0))

before creation of the computational units for Q(2, 1, 1). 48

Figure 4.1 Example screenshot of the MRCA simulator at startup (scaled down)

in Mac OS X 10.6.7. 54

www.manaraa.com

viii

Figure 4.2 Example states of a one-dimensional CA for {(x, y) ∈ [0, 1]2 | y < x2}

generating the value of x2. 67

Figure 4.3 Example states of a one-dimensional CA for L while performing com-

parisons. 70

Figure 4.4 Initial states of an MRCA for {(x, y) ∈ [0, 1]2 | y < x2} depicting

only the pinwheel for dyadic square Q(1, 0, 0). 73

Figure 4.5 Configurations of an MRCA for L = {(x, y) ∈ [0, 1]2 | y < x2}

depicting a coloring process for dyadic square Q(1, 0, 1). 74

Figure 4.6 Example of fission due to computational concerns when computing

Q(3, 111binary, 111binary). A single computational unit is shown. . . . 75

Figure 4.7 Example of fission due to computational concerns. 78

Figure 4.8 Example rational polygon with three rational line boundaries. 81

Figure 4.9 Nine primary ways a rational line can enter and exit a unit square. . 84

Figure 5.1 Representation of sequences as paths in a binary tree. 93

Figure 6.1 Candidate Bayesian networks representing our example. 113

Figure 6.2 Paths from X to Y through simple path P = {1,2,3} in an (a) undi-

rected and (b) directed graph. 115

Figure 6.3 The W-network with H labeled as a hidden variable. 119

Figure 6.4 (a) Example network and (b) the same network with an optimizing

hidden variable. 120

Figure 6.5 Example networks of size 4. 124

Figure 6.6 Graph of the size of any directed, acyclic graph (DAG) against the

log of the number of possible DAGs (solid line) and number of non-

isomorphic possible DAGs (dotted line). 126

www.manaraa.com

ix

Figure 6.7 Examples of Bayesian networks with essential hidden variables of size

5, 6, and 7. 132

www.manaraa.com

x

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis.

First and foremost, Drs. Jack H. Lutz and James I. Lathrop for their guidance, patience

and support throughout this research and the writing of this thesis. Their insights and words

of encouragement have often inspired me and renewed my hopes for completing my graduate

education.

I would also like to thank my committee members for their efforts and contributions to

this work: Drs. Alicia L. Carriquiry, Vasant Honavar, Timothy McNicholl, and Jin Tian.

Dr. Giora Slutzki and Taylor Bergquist provided assistance without which the the work with

regular languages and MRCA simulation would be woefully incomplete. I would also like to

thank my Master’s advisor, Dr. Dimitris Margaritis, for his assistance and expertise in my

work with hidden variables in Bayesian networks.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

It is a linchpin of scientific investigation that hypotheses are always subject to review.

No matter how tight an experimental design, new evidence or a new perspective can render

the common interpretation of any experiment false. A prominent example is the work of

Albert Einstein in the development of general relativity [13]. Einstein explained space and

time using a significantly different approach compared to that used in the previous 200 years

since Isaac Newton. As a consequence, nuclear science became possible and extraordinary

astronomical phenomena such as neutron stars, black holes, and gravitational waves were

discovered [2]. However, the basic experimental results that Einstein based his theories on

existed prior to those theories. He simply provided a new perspective.

Our work is centered around topics where we provide a new model or approach to a well-

known paradigm. We provide a new lens through which to view an area of research, providing

access for new researchers and perspectives. After a brief orientation with common terms

in Chapter 2, we examine computation of real-valued sets in Chapter 3, our general multi-

resolution cellular automata (MRCA) simulator in Chapter 4, how to prove languages are

non-regular using Kolmogorov complexity in Chapter 5, and how to show hidden variables

are valuable in Bayesian networks in Chapter 6. The remainder of this introduction is a

summary of each of these areas and the main contributions of this dissertation to these

areas.

www.manaraa.com

2

1.1 Multi-Resolution Cellular Automata and Computable

Analysis

In Chapter 3, we examine how the multi-resolution cellular automaton (MRCA) provides

a new approach to understanding the field of computable analysis. This chapter is based on

work with Lathrop and Lutz [28].

The primary objective of computability and complexity in analysis (or computable anal-

ysis for short) is to provide a realistic theoretical foundation for scientific computing. Specif-

ically, large-scale, high-precision scientific computation requires this foundation in problem

domains involving real numbers, functions on Euclidean spaces, differential equations, and

other continuous mathematical objects.

The first task for computable analysis was to formulate notions of computability and

complexity that are appropriate for such problem domains. It began with Turing [57; 58],

who defined computable real numbers in 1936. It was furthered by Grzegorczyk [17] and

Lacombe [27], who used the oracle Turing machine model from Turing’s Ph.D. thesis [59] to

define the computability of functions from real numbers to real numbers.

Progress accelerated dramatically in the 1980s. Pour-El, Richards, and Weihrauch con-

ducted deep and influential investigations in computable analysis [46; 61], and Ko, Friedman,

Kreitz, and Weihrauch formulated and investigated useful and informative models of the com-

putational complexity of real-valued functions [22; 26; 23; 62]. This area is now a large and

active research area that includes rigorous investigations of computation in Hilbert spaces,

Banach spaces, differentiable manifolds, and many of the other mathematical settings of

large-scale scientific computing.

Braverman and Cook [6] coined the term “bit-computability” for the approach shared

by the above models and argued convincingly that it formed a good theoretical foundation

for scientific computing. This is the definition we will use throughout this dissertation when

www.manaraa.com

3

referring to “computable” objects that include real values.

Our contribution is the introduction of a variation of the cellular automaton model for

computable analysis. By reframing the questions of computable analysis in terms of cellu-

lar automata, we hope to interest newcomers in these questions as well as provide a new

characterization of the complexities of these problems.

In the half century since their introduction by Ulam and von Neumann [7], cellular

automata (CA) have been used in many ways. They have served as modeling tools for

the physical, biological, and social sciences; been used to investigate speculative frontiers

such as artificial life and hypercomputation; and shed new light on universality, parallelism,

communication, fault tolerance, and other fundamental aspects of the theory of computing

[7; 63; 16; 51; 32; 41]. Our primary interest is the last, specifically to use cellular automata

to further our knowledge of the foundations of computable analysis.

Our initial focus is on the computability of subsets of Euclidean space, as defined by

Brattka and Weihrauch [4; 62] and also exposited by Braverman [5; 6]. For ease of exposition

and initial exploration, we confine ourselves to subsets of the 2-dimensional Euclidean unit

square [0, 1]2. Informally, a subset X of [0, 1]2 is computable if there is an algorithm that

turns pixels green when they are clearly in X and red when they are clearly not in X. A

key feature of this definition is that the pixels have arbitrary, but finite, resolution.

More formally, for each rational point q ∈ (Q2 ∩ [0, 1]2) and each n ∈ N, let B(q, 2−n)

denote the open ball of radius 2−n centered at q (the set of points that are strictly less than

distance 2−n from a point q). A set X ⊆ [0, 1]2 is bit computable if there is a computable

function f : (Q2 ∩ [0, 1]2) × N → {0, 1} such that, for all q ∈ (Q ∩ [0, 1])2 and n ∈ N, the

following two conditions hold.

(i) If B(q, 2−n) ⊆ X, then f(q, n) = 1 (green).

(ii) If B(q, 21−n) ∩X = ∅, then f(q, n) = 0 (red).

www.manaraa.com

4

X
2 n

11

qqqqqq

Figure 1.1 An example of a ball that is inside a set X so f(q, n) = 1.

X
1 n20

q

Figure 1.2 An example of a ball that is outside a set X so f(q, n) = 0.

If the hypotheses of (i) and (ii) are both false, then f(q, n) must still be defined, and it may

be either 1 or 0.

An example of (i) appears in Figure 1.1 and an example of (ii) appears in Figure 1.2.

Figure 1.3 shows a couple of examples where neither (i) nor (ii) applies so the output of

f(q, n) is either 0 or 1. We need this “wiggle room” in defining sets of real coordinates to

deal with the fact that most real numbers cannot be completely specified with a bounded

amount of information.

We now introduce a cellular automaton model that achieves the spirit of this definition,

with its cells corresponding to pixels on a computer screen. The first thing to note is that

such a cellular automaton must allow arbitrary, but finite, precision. Accordingly, we allow

cells to “fission” zero or more times during the course of execution. When a cell discovers

that it is completely in or out of the set X, we want it to turn green or red (respectively)

and then stay that color. Other cells may still be computing and/or fissioning, so we may

www.manaraa.com

5

X

? 21 n

2 n

?

qq

q

Figure 1.3 An example of some balls that are in neither case so f(q, n) can be 0 or 1.

have cells of many different resolutions (sizes) at any given time.

In Section 3.1, our initial exploration of [0, 1]2 using the tools of computable analysis

yields that X ⊆ [0, 1]2 is computable if and only if it is the separator of two computably

open sets whose union is dense, with the caveat that X must have a computably nowhere

dense boundary (Theorem 3.1.2). Informally, if a set X has a “thin” boundary, there are

two computable functions to enumerate balls of points forming 2 sets covering [0, 1]2 and X

is the separator of these sets (i.e. X is a subset of one of the sets but not the other). We

also investigate the possibility that the two sets could always be X◦ and [0, 1]2 \X◦ and find

a counterexample that we call the Turing-gapped comb.

Section 3.2 introduces the multi-resolution cellular automaton (MRCA) which is a mul-

tidimensional cellular automaton that can, in addition to changing state depending on a

small neighborhood, fission into multiple smaller cells, each half the size of the original in

each dimension. We then define properties such as how a MRCA configuration is stored,

how a neighbor is found, and what it means for an MRCA to compute a set of real points

through colorings. Our main result in this area, presented in Section 3.3, is that a set X with

computably nowhere dense boundary is computable if and only if it is MRCA computable

(Theorem 3.3.2). This requires a complex construction outlined in this section and expanded

www.manaraa.com

6

in detail in Chapter 4.

Section 3.4 investigates constraining the model given in the previous section to poly-

nomial time. We define polynomial time computable sets in the MRCA model as sets for

which an approximation of the represented set to precision parameter t can be achieved in

a number of steps polynomial in t. Our main result here is that a set X with a poly-time

computably nowhere dense boundary is poly-time computable if and only if it is MRCA

poly-time computable (Theorem 3.4.6). This requires a careful analysis of the construction

used in the previous section.

1.2 An MRCA Simulator

Chapter 4 begins with Section 4.1, a primer on how to use our MRCA simulator. We write

this simulator with the goal of attracting interest to the area. While Chapter 3 included

several foundational reasons for which the MRCA model is useful in understanding real

computation, this chapter focuses on how an MRCA can be used in a hands-on way to

model computation as well as stoking the imagination of the user about how to use MRCAs

to simulate other phenomena. We include a description and figures of how the simulator

works as well as explain how rules specify transitions. Complete code for the simulator can

be found in Appendix A. This chapter is based on work with Bergquist, Lathrop, and Lutz.

As outlined in the proof of Lemma 3.3.1 in Section 3.3, we can transform a one-dimensional

CA for any computable cellular k-coloring ψ so it can be used to construct a k-coloring MRCA

A such that, for each i ∈ [k], Si(A) = Si(ψ). Section 4.2 lays out the exact requirements for

a set of transition rules for a one-dimensional CA that can be used for our construction and

the subsequent transformations done to those rules to include in the specification of A.

Section 4.3 applies the ideas given in the previous two sections by explaining a set of

one-dimensional CA rules for the set L = {(x, y) ∈ [0, 1]2 | y < x2}, what other rules must

be specified regardless of CA, and how these rules interact. The construction is simplified

www.manaraa.com

7

by the fact that L is computable by a one-dimensional CA that always halts, so some of the

alterations mentioned in the last section are not needed.

The final set of rules appears in Appendix B. Figures in this section show these rules in

action, coloring L and [0, 1]2 \ L.

A more restricted and simple collection of subsets of [0, 1]2 consists of sets X that can

be MRCA computed using MRCA rules that do not reference their neighbors (i.e., every

cell transition is based entirely on the previous state of that cell). We show in Section 4.4

that MRCA rules written in this way (called in-place MRCA rules) can compute any region

with rational lines as its boundaries (Theorem 4.4.3). Code for computing the rules for any

rational line can be found in Appendix C. The classes in this appendix depend on the classes

given in Appendix A and serve as an example of how MRCA-related classes can be used to

perform automated rule construction.

1.3 Kolmogorov Complexity and Regular Languages

In Chapter 5, we reinterpret and expand results by Li and Vitányi [29] relating Kol-

mogorov complexity to regular languages. This chapter is based on work with Lathrop,

Lutz, and Slutzki.

One of the main topics in a typical undergraduate computational theory course estab-

lishes a hierarchy of language families. The Chomsky Hierarchy singles out four classes of

languages defined by the computational resources necessary to decide membership in the

language: regular languages, context-free languages, context-sensitive languages, and recur-

sively enumerable languages.

This chapter investigates a new way to show a language is nonregular, i.e., not a member

language of the first class in the Chomsky Hierarchy. The Myhill-Nerode Theorem [19; 1]

guarantees that a language L is regular if and only if it is the union of equivalence classes

of a right-invariant equivalence relation of finite index on Σ∗. Using this theorem to directly

www.manaraa.com

8

show nonregularity is difficult to explain and unwieldy so a variety of alternative approaches

exist. Most fall into the category of “pumping” lemmas as we review in Section 5.4. While

pumping lemmas have been a part of the undergraduate theory curriculum for years, it is

sometimes not intuitive to students and the version most easily proven is only a necessary

but not a sufficient condition for regularity. This means that there exist languages that are

not regular that still satisfy the common version of the pumping lemma (Theorem 5.4.4) and

proving more complete versions of the pumping lemma requires advanced tools not covered

in an undergraduate computational theory course [12].

We instead follow the approach of Li and Vitányi [29] to apply the Incompressibility

Theorem of Kolmogorov complexity [24] (Theorem 5.1.4) to find a characterization of reg-

ular languages that makes our intuition (and students’ intuitions) about the link between

(deterministic) finite state machines and regular languages rigorous and easy to apply.

In Section 5.1, after defining the Kolmogorov complexity C(x) function on strings as

the length of the shortest program to generate x, we show in Theorem 5.1.5 that there are

infinitely many positive integers n for which at most 2c+1 strings x ∈ {0, 1}n that satisfy

C(x) ≤ c+ log n (Theorem 5.1.5). This improves the best-known bound from 2c+O(1) [10] to

2c+1 using a simple method of proof more accessible to undergraduates.

Section 5.2 starts with Theorem 5.2.4, an undergraduate-accessible proof of how regular

languages can be characterized by Kolmogorov complexity [29]. We also provide a new proof

of the Kolmogorov complexity regularity lemma: language A ⊆ Σ∗ is regular if and only

if there is a constant dA ∈ N such that, for all x, yxn ∈ Σ∗, if yxn is the nth string in Ax

(counting from 0 in the standard ordering of Σ∗), then C(yxn) ≤ dA +C(n) (Corollary 5.2.5).

Our proofs are accessible to an undergraduate theory class and could be used in place of

pumping lemma-based proofs of non-regularity.

We then show some example applications of the Kolmogorov complexity regularity lemma

in Section 5.3 and explore prior work related to the pumping lemma in Section 5.4.

www.manaraa.com

9

1.4 Essential Hidden Variables in Bayesian Networks

In Chapter 6, we investigate an alternative perspective on hidden variables in Bayesian

networks. This leads to a different approach to hidden variable detection focused on those

that improve the model. This chapter is based on work with Margaritis [43].

Since the introduction of Bayesian networks [44], the automated discovery and use of hid-

den variables (also called latent variables) to represent unmeasured or unmeasurable factors

in a useful way has been an open problem. A Bayesian network specifies a joint probability

distribution function (pdf) with a graph where each attribute of the data is represented

by a vertex and paths in the graph indicate influence (or the absence of influence) between

attributes. Rather than representing the joint pdf with a table containing the probability

of each possible combination of attributes of interest, a collection of potentially smaller,

local probability distributions of each attribute is used. Hidden variables are hypothesized

attributes represented as nodes in the graph about which no experimental information is

known.

It has been shown that Bayesian networks with hidden variables represent a larger class

of probabilistic distributions than the class represented by Bayesian networks without hidden

variables [14]. Supplementing this theoretical advance, the feasible discovery of hidden vari-

ables that enable this increased expressiveness would impact a variety of fields that utilize

Bayesian networks.

Hidden variables may be used in Bayesian networks for semantic reasons [52] or for the

compactness of the resulting Bayesian network [3]. ∗ Most of the work in Artificial Intel-

ligence (AI) has centered around the second aim—the use of hidden variables to simplify

Bayesian networks while not altering the distribution that the network represents. However,

∗ Many in the field of artificial intelligence believe these aims are the same [45]. The central argument is
that hidden variables that optimize a network must take advantage of some characteristic of the underlying
probability distribution. Therefore, there must be something about the underlying distribution that allows
the hidden variable to have an effect for a reasonable scoring method to find adding the hidden variable to
be a good idea.

www.manaraa.com

10

here we focus on detecting hidden variables that are essential to a more accurate represen-

tation of the underlying distribution.

Section 6.1 provides a motivating example and Section 6.2 provides background for the

area of hidden variables in Bayesian networks. Section 6.3 provides an algorithm that sup-

ports our main result for this chapter: that the subset of the edge constraints given in the

definition of W-networks (Definition 6.2.9) holds around all essential hidden variables. This

means that the W-network is always found embedded in a network with a hidden variable

and specifically that the hidden variable was always at the apex of the middle peak in the

“W” of the W-network in the networks we examined. While these results may not generalize

to networks of size larger than 8, this chapter provides a new perspective on the importance

of investigating essential hidden variables separately from other types of hidden variables.

www.manaraa.com

11

CHAPTER 2. PRELIMINARIES

We use the set Z of integers, the set N of natural numbers (i.e. nonnegative integers),

the set Q of rational numbers, and the set R of real numbers.

[0, 1] represents a subset of R between 0 and 1 (inclusive) and [0, 1]2 represents the unit

square of R2 with lower-left corner at the origin. The open ball with center x ∈ [0, 1]2 and

radius r ≥ 0 is the set

B(x, r) =
{
y ∈ [0, 1]2

∣∣|x− y| < r
}
,

where |x− y| in this case denotes the Euclidean distance from x to y. We write B for the set

of all such balls having rational centers (x ∈ ([0, 1]∩Q)2) and rational radii (r ∈ ([0, 1]∩Q)).

Note that B is a countable basis for the Euclidean topology on [0, 1]2.

For X ⊆ [0, 1]2, we use the standard topological notations X◦, X, and ∂X for the interior,

closure, and boundary of X, respectively. For those not familiar, X◦ includes all points in

X that can be the center of an open ball of any positive radius entirely contained in X. X

include all points in X plus those points p for which, for every ball of finite radius r, B(p, r)

includes at least one point in X. ∂X is X \X◦ or equivalently X ∩ ([0, 1]2 rX).

X◦ and any open ball is an example of an open set, a set where all points p are such

that every ball of finite radius r, B(p, r), includes only points in the set. X is an example

of a closed set or set where all points p are such that every ball of finite radius r, B(p, r),

includes at least one other point in the set. Two sets in [0, 1]2 are disjoint if they have no

points in common and two sets of sets in [0, 1]2 are pairwise disjoint if all pairs of sets in the

set of sets are disjoint.

www.manaraa.com

12

All logarithms in this dissertation are base 2. For each n ∈ N, we write [n] = {0, 1, . . . , n−

1}. The function [[]] maps boolean-valued propositions to {0, 1} — specifically, for a propo-

sition φ, [[φ]] is 1 if φ is true, 0 if it is not.

For each n ∈ N and i, j ∈ [2n], we define the closed dyadic square

Q(n, i, j) =
[
i · 2−n, (i+ 1) · 2−n

]
×
[
j · 2−n, (j + 1) · 2−n

]
,

and we write Q for the set of all such squares. Note that Q(0, 0, 0) = [0, 1]2 and, as we shall

see, Q is the set of all possible cells of an MRCA. We will always refer to i and j in binary,

using subscript binary as a reminder of this fact where necessary.

A language, or decision problem, is a set L ⊆ {0, 1}∗. We can identify a language L with

its characteristic sequence χL defined by χL[n] = [[sn ∈ L]]. As an example decision problem,

recall the diagonal halting problem K = {n ∈ N | τ(n) <∞} where τ(n) is the running time

of the nth Turing machine on input n.

A language L ∈ Σ∗ is computable if there exists a Turing machine that takes a member of

Σ∗ as input and halts (i.e., terminates after a finite amount of time) with a correct indication

of whether the input belongs in L or not. A language L ∈ Σ∗ is computably enumerable (c.e.)

if there exists a Turing machine that takes a member of Σ∗ as input and, if the input is in

L, halts with a correct indication of this. Note that Turing machines witnessing that L is

c.e. need not halt if the input is not in L. A language L is co-c.e. if there exists a Turing

machine that takes a member of L as input and, if the input is not in L, halts with a correct

indication of this. If L is c.e. and co-c.e., it is computable.

If a language is computable, we can find time bounds for the fastest Turing machine that

computes it. Given a function t : N→ N, a language L ∈ Σ∗ is t-time bounded if there exists

a Turing machine that takes a member of Σ∗ of length n as input and halts after at most

t(n) steps with a correct indication of whether the input belongs in L. L ∈ Σ∗ is said to

be poly-time bounded if t(n) is a polynomial p(n) (i.e., can be written in the form
∑m

i=0 cin
i

where ci ∈ Q,m ∈ N). The set of all languages that are poly-time bounded is called P .

www.manaraa.com

13

A string is any w ∈ {0, 1}∗. We write |w| for the length of string w and λ for the empty

string. For i, j ∈ {0, . . . , |w| − 1}, we write w[i . . . j] for the string consisting of the ith

through the jth bits of w and w[i] for w[i . . . i], the ith bit of w. Note that the 0th bit w[0] is

the leftmost bit of w and that w[i . . . j] = λ if i > j.

A sequence is any S ∈ {0, 1}∞. Notations S[i . . . j] and S[i] are defined exactly as for

strings. We work in the Cantor space C consisting of all sequences. A string w ∈ {0, 1}∗ is

a prefix of a sequence S ∈ C, and we write w v S, if the first |w| bits of S is w.

Given an alphabet Σ, fix an ordering of Σ, and let wΣ
0 , w

Σ
1 , . . . be the enumeration of Σ∗,

first in order of length and, within each length, in the lexicographic order induced by the

order on Σ. We will refer to this as the standard enumeration of Σ. When referring to the

standard enumeration of {0, 1}∗, we will use sn for the nth element where s0 = λ, s1 = 0, s2 =

1, s3 = 00, s4 = 01,

www.manaraa.com

14

CHAPTER 3. MULTI-RESOLUTION CELLULAR

AUTOMATA AND COMPUTABLE ANALYSIS

Our first and primary topic in this dissertation is the creation of a new model of compu-

tation, the multi-resolution cellular automata (MRCA), and its application to computable

analysis. Although work so far has focused on showing the equivalence of MRCA computa-

tion to real computation (as defined in computable analysis), we hope that this new model

will lead to new approaches to computable analysis and beyond.

3.1 Real Computation and Small Boundaries

In this section, we review some fundamental aspects of the computability of sets in the

Euclidean plane and prove a new characterization of computable sets.

A set G ⊆ [0, 1]2 is computably open if there is a computably enumerable set A ⊆ B such

that G = ∪A. Since each B(x, r) ∈ B is specified by its rational center and radius, it is clear

what it means for a subset of B to be computably enumerable. This notion is easily seen to

be incomparable with the notion of computability defined in the introduction. For example,

if α ∈ (0, 1) is a real number that is lower semicomputable but not computable, then [0, α)2

is computably open but not computable. Conversely, the square
[
0, 1

2

]2
is computable but

not open, hence not computably open.

A set D ⊆ [0, 1]2 is dense if it meets every nonempty open ball. A set Z ⊆ [0, 1]2 is

nowhere dense if it is not dense in any nonempty open ball, i.e., for every B ∈ Br{∅}, there

exists B′ ∈ B r {∅} such that B′ ⊆ B r Z (e.g., a line as in Figure 3.1). Effectivizing this,

www.manaraa.com

15

B

X

B’

Figure 3.1 An example nowhere dense set X. Ball B′ is evidence that X is nowhere
dense with respect to B.

we say that Z is computably nowhere dense if there is a computable function f : Br {∅} →

B r {∅} such that, for all B ∈ B r {∅}, f(B) ⊆ B r Z.

Nowhere dense sets are very small. For example, the Baire category theorem says that

no countable union of nowhere dense sets contains all of [0, 1]2. Computably nowhere dense

sets are very small in an even stronger sense [30].

Observation 3.1.1. A set Z ⊆ [0, 1]2 is computably nowhere dense if and only if there is a

computably open dense set G ⊆ [0, 1]2 such that Z ∩G = ∅.

A separator of two (disjoint) sets A and B is a set S such that A ⊆ S and B ∩ S = ∅.

The following result is crucial to our main theorem in Section 3.3.

Theorem 3.1.2. If X ⊆ [0, 1]2 is a set whose boundary is computably nowhere dense, then

the following two conditions are equivalent.

(1) X is computable.

(2) X is a separator of two computably open sets whose union is dense.

Proof. Assume first that (2) holds. (We do not need the small-boundary hypothesis for this

direction of the proof.) Then we have computably open sets G,H ⊆ [0, 1]2 such that X

is a separator of G and H and G ∪ H is dense on [0, 1]2. Since G and H are computably

www.manaraa.com

16

open, there exist c.e. sets AG, AH ⊆ B such that G =
⋃
AG and H =

⋃
AH . Let

f : (Q2 ∩ [0, 1]2)× N→ {0, 1} be computed by Algorithm 1.

Algorithm 1 f(q, r) = y
Input: (q, r) ∈ (Q ∩ [0, 1])2 × N.
Output: y ∈ {0, 1}.

1: Find B ∈ B such that
2: (i) B ∈ AG and B ∩B(q, 21−r) = ∅
3: or
4: (ii) B ∈ AH and B ∩B(q, 2−r) 6= ∅
5: if (i) holds then
6: return 1
7: else
8: return 0
9: end if

Since G ∪H is dense, any ball B(q, 2−r) must meet G ∪H. If B(q, 2−r) meets H then a

set B as in (ii) exists. If not, then B(q, 2−r) meets G, whence a set B as in (i) exists. Since

AG and AH are c.e., it follows that a set B satisfying (i) or (ii) can be found. Hence our

algorithm always halts, and f is a computable, total function. Now

B(q, 2−r) ⊆ X ⇒ B(q, 2−r) ∩H 6= ∅

⇒ f(q, r) = 1,

and

B(q, 21−r) ∩X = ∅ ⇒ B(q, 21−r) ∩G = ∅

⇒ f(q, r) = 0,

so f testifies that X is computable, i.e., (1) holds.

Conversely, assume that (1) holds and that ∂X is computably nowhere dense. By Obser-

vation 3.1.1 there is a computably open dense set D ⊆ [0, 1]2 such that D∩∂X = ∅. Since D

is computably open, there is a c.e. set of balls D ⊆ B such that D =
⋃
D. Since D∩∂X = ∅

www.manaraa.com

17

and {X◦, ([0, 1]2rX)◦, ∂X} is a partition of [0, 1]2, it must be the case that every ball B ∈ D

satisfies B ⊆ X◦ or B ⊆ ([0, 1]2 rX)◦. Otherwise, (B ∩X◦, B ∩ ([0, 1]2 rX)◦) would form

a disconnection of B, contradicting the connectedness of balls. We now show that the set

DG = {B ∈ D | B ⊆ X◦}

is c.e. Let f : (Q∩[0, 1])2×N→ {0, 1} testify to the computability of X and B = B(q, r) ∈ D.

Note three things.

(i) r = 0⇒ B ∈ DG.

(ii) If r 6= 0, let n(r) be the least positive integer such that 2−n(r) < r. Then

f(q, n(r) + 1) = 1 ⇒ f(q, n(r) + 1) 6= 0

⇒ B(q, 2−n(r)) ∩X 6= ∅

⇒ B ∩X 6= ∅

⇒ B ∩X◦ 6= ∅

⇒ B ⊆ X◦

⇒ B ∈ DG.

(iii) If r 6= 0, then

f(q, n(r) + 1) = 0 ⇒ f(q, n(r) + 1) 6= 1

⇒ B(q, 2−n(r)+1) 6⊆ X

⇒ B 6⊆ X

⇒ B 6∈ DG.

Taken together, these three things show that

DG = {B(q, r) ∈ D | r = 0 or f(q, n(r) + 1) = 1} .

www.manaraa.com

18

Since D is c.e. and f is computable, it follows that DG is c.e.

A similar argument shows that the set

DH =
{
B ∈ D | B ⊆ ([0, 1]2 rX)◦

}
is c.e.

Let G =
⋃
DG, H =

⋃
DH . Then G and H are computably open. Also, G ⊆ X◦ and

H ⊆ ([0, 1]2 rX)◦, so X is a separator of G and H. Finally, G ∪H = D is dense in [0, 1]2,

so (2) holds.

The small-boundary hypothesis is needed here. For example, if X =
[
0, 1

2

]2∪(Q∩ [0, 1])2,

then (1) holds, but (2) fails.

It is tempting to think that the two computably open sets in (2) can always be the interior

of X and its complement. We now give an example of a computable set X with computably

nowhere dense boundary whose interior is not computably open.

Let

X = [0, 1]2 r
∞⋃
n=2

Gn,

where

Gn =

(
1

n
− ε(n),

1

n
+ ε(n)

)
×
(

0,
1

2

)
,

ε(n) = 2−(τ(n)+n+2),

and τ(n) is the running time of the nth Turing machine on input n. Note that ε(n) = 0 and

Gn = ∅ if τ(n) =∞.

Since each “gap” Gn is open, the set X is closed. Since X has gaps whose width is

dictated by the run time of Turing machines, we call X the Turing-gapped comb (shown in

Figure 3.2).

Lemma 3.1.3. For all m,n ∈ N, Gm and Gn are pairwise disjoint.

www.manaraa.com

19

2
1

gaps

Figure 3.2 The Turing-gapped comb (appearing in blue).

Proof. Let Gn and Gn+1 be adjacent gaps. Let `n be the x-coordinate of the left border of

Gn, and let rn+1 be the x-coordinate of the right border of Gn+1. Then

`n − rn+1 =

(
1

n
− ε(n)

)
−
(

1

n+ 1
+ ε(n+ 1)

)
=

(
1

n
− 1

n+ 1

)
− (ε(n) + ε(n+ 1))

=
1

n(n+ 1)
− (ε(n) + ε(n+ 1))

≥ 1

n(n+ 1)
−
(
2−(n+2) + 2−(n+3)

)
=

1

n(n+ 1)
− 3

2n+3

=
2n+3 − 3n(n+ 1)

2n+3 · n(n+ 1)

> 0,

as n ≥ 2.

Lemma 3.1.4. The Turing-gapped comb set X is computable.

Proof. For each k ∈ N, define the “fat set”

Fk =
{
n ∈ N | ε(n) ≥ 21−k} .

It is easy to check that

www.manaraa.com

20

Fk = {n ∈ N | τ(n) ≤ k − n− 3} .

Note that each Fk is finite, and there is an algorithm that, given k ∈ N, lists the elements of

Fk.

Define f : (Q2 ∩ [0, 1]2)× N→ {0, 1} as

f(q, k) =

 0 if (∃n ∈ Fk) B(q, 21−k) ⊆ Gn

1 otherwise.

It is clear that f is computable. Also,

B(q, 2k) ⊆ X ⇒ (∀n)B(q, 2−k) ∩Gn = ∅

⇒ (∀n)B(q, 21−k) 6⊆ Gn

⇒ f(q, k) = 1,

and

B(q, 21−k) ∩X = ∅ ⇒ (∃n)B(q, 21−k) ⊆ Gn

⇒ (∃n ∈ Fk)B(q, 21−k) ⊆ Gn

⇒ f(g, k) = 0,

so f testifies that X is computable.

Lemma 3.1.5. If f : N→ B satisfies

∞⋃
j=0

f(j) = X◦,

where X is the Turing-gapped comb then the diagonal halting problem K is co-c.e. relative

to f .

www.manaraa.com

21

Proof. Assume the hypothesis. Then for all n ≥ 2,

n ∈ K ⇔
(

1

n
,
1

4

)
6∈ X◦

⇔ (∀j ∈ N)

(
1

n
,
1

4

)
6∈ f(j).

So, to find whether the nth Turing machine halts, we enumerate balls f(j) of X◦ until(
1
n
, 1

4

)
∈ f(j). This process will halt if and only if n 6∈ K so K is co-c.e. relative to f (given

our hypothesis).

Corollary 3.1.6. The interior of the Turing-gapped comb X◦ is not computably open.

Proof. Since K is not co-c.e. relative to any computable function, Lemma 3.1.5 tells us that

there is no computable f : N → B such that
∞⋃
j=0

f(j) = X◦. Hence X◦ is not computably

open.

Thus, by Lemma 3.1.4 and Corollary 3.1.6, the Turing-gapped comb is computable but

its interior is not computably open. We cannot always use the interior of a set and its

complement as the two sets that a set separates in part (2) of Theorem 3.1.2.

It is interesting to note that the Turing-gapped comb is also regular, meaning that X◦ =

X. Taking the interior of the set simply removes its border and taking the closure restores

only and exactly that border (this is why it is key that the gaps be open sets). This implies

that the comb is not a “bizarre” set in a topological sense.

3.2 Introduction to MRCAs

We now introduce the multi-resolution cellular automaton (MRCA), a model of compu-

tation that generalizes cellular automata by allowing cells to fission.

Let U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)} be the set of direction vectors and let S be a

finite set of states. We write S⊥ = S ∪ {⊥}, where ⊥ is an “undefined” symbol. We define

www.manaraa.com

22

a neighborhood status for S to be a function ν : U2 × {0, 1} → (S⊥)2∗, and we write NS for

the set of all such ν.

Definition. A multi-resolution cellular automaton (MRCA) is a triple

A = (S, δ, s)

where S is a finite set of states; s ∈ S is the start state; and

δ : S ×NS → S ∪ S4

is the transition function.

In order to specify the operation of an MRCA, we need a careful understanding of the

neighborhood of a cell Q. For each Q ∈ Q, u ∈ U2, and b ∈ {0, 1}, let Qu,b be the dyadic

closed square defined as follows.

(i) Qu,b is adjacent to Q on side u of Q.

(ii) The side-length of Qu,b is half that of Q.

(iii) If u = ±(0, 1), then Qu,0 lies below Qu,1; if u = ±(1, 0), then Qu,0 lies to the left of

Qu,1.

Note that Qu,b ∈ Q, unless Q abuts [0, 1]2 to direction u.

A multi-resolution is a finite set R ⊆ Q with the following two properties.

(i) For all Q1, Q2 ∈ R, Q1 6= Q2 ⇒ Q◦1 ∩Q◦2 = ∅.

(ii)
⋃
R = [0, 1]2.

That is, R is a finite set of cells that do not overlap (except perhaps along their edges) and

that cover [0, 1]2.

∗For reasons to be discussed soon, the neighbor to a direction from our current cell includes up to two
cells of one size smaller.

www.manaraa.com

23

A configuration of an MRCA A = (S, δ, s) is an ordered pair γ = (R, σ), where R is a

multi-resolution and σ : R → S is an assignment of states to cells inR. We write CONFIGA

for the set of all configurations of A.

If γ = (R, σ) is a configuration of an MRCA A = (S, δ, s) and Q ∈ R, then the neigh-

borhood status of Q in γ is the function νγ,Q ∈ NS defined by

νγ,Q(u, b) =

 σ(Q′) if Qu,b ⊆ Q′ ∈ R;

⊥ if no such Q′ exists.

Note that νγ,Q(u, b) = ⊥ if either

(i) Q abuts side u of [0, 1]2, or

(ii) R uses two or more cells smaller than Qu,b to cover Qu,b.

Intuitively, the “neighbors” of a cell Q are the eight surrounding cells suggested by the

following picture.

Q

If any of the neighboring cells are outside of [0, 1]2 or have already subdivided, their states

are undefined (⊥) for the purpose of updating Q. If some existing cell contains two of these

neighboring cells, its state is used for both b = 0 and b = 1 neighbor. If the value of δ,

applied to this neighborhood information, is in S, then this is the new state of Q.

We can view an MRCA configuration in a number of different ways. The most common

and the one we use for most of this dissertation is depicted in Figure 3.3(b). However, when

configuration information is stored, the data structure used to store location and state is

more accurately depicted as Figure 3.3(a) — a quadrary tree where each branch indicates a

fission to a set direction and the leaves are cells. For any fission of a cell c in this view, let

www.manaraa.com

24

00, 10, 01, and 11 be the string representation of the location of the southwest, northwest,

southeast, and northeast child cells of c. So, for example, there is no actual cell n2 in

Figure 3.3(a) because it has children (indicating fission). It has cells with state 1 and 0 in

its southeast and northeast quadrants while its other two children have fissioned.

A final representation of the location information is as a prefix-free set R and a function

mapping those strings to symbols σ as appearing in the caption of Figure 3.3. For example,

the cell marked x can be written as at location 1001, the concatanation of its ancestor’s

location strings. This last interpretation allows us to more succinctly discuss the complexity

of a configuration using tools like Kolomogorov complexity.

We now examine the computation of νγ,Q(u, b) using a few simple, computable func-

tions. set : U2 → {0, 1}2 × {0, 1}2 is used to discover the location string for fissioned cells

to a particular direction and is defined as set((0, 1)) = {01, 11}, set((0,−1)) = {00, 10},

set((1, 0)) = {11, 10}, and set((−1, 0)) = {00, 01}. ⊕ : {0, 1}2 × U2 → {0, 1}2 is defined as:

∀j ∈ {0, 1} 0j ⊕ (1, 0) = 1j, 1j ⊕ (−1, 0) = 0j, j0⊕ (0, 1) = j1, and j1⊕ (0,−1) = j0. The

x ⊕ u operation will be referred to as flipping x in direction u and is used to specify the

location of a neighbor cell to a direction (either vertically or horizontally).

Using these functions, νγ,Q is given for two dimensions in Algorithms 2 and 3. A Java

implementation appears in Appendix A in the class Configuration2D as the method named

neighCell. Higher-dimensional versions of νγ,Q can be derived similarly.

Example 3.2.1. See Figure 3.3, where we are seeking the north neighbor of x (which is call

y).

1. Trace from the leaf node corresponding to x up until we find an ancestor node that

is not one of the nodes in direction u (ignoring the other part of the direction). For

example, a node seeking its north parent (u = (0, 1)) traces its lineage until it reaches

a node n1 for whom n1 is not a north child of its parent. This accomplishes a “zooming

out” to the fission that placed x and its ancestors to the south of n1. If such a node

www.manaraa.com

25

Algorithm 2 σ(y) = νγ,Q(u, b)
Input: γ ∈ CONFIGA; Q ∈ R; u ∈ U2; b ∈ [0, 1].
Output: σ(y).

1: cur ← neighRec(γ,Q,u, b)
2: if cur is null or cur’s children have children then
3: return ⊥
4: else
5: if cur has no children then
6: return σ(cur)
7: else
8: cur ← b cell in direction u from Q
9: return σ(cur)

10: end if
11: end if

Algorithm 3 y = neighRec(γ,Q,u, b)
Input: γ ∈ CONFIGA; Q ∈ R; u ∈ U2; b ∈ [0, 1].
Output: y ∈ γ.

1: cur ← Q
2: if cur.parent == null then
3: return null
4: else if ∃` ∈ set(u) cur.parent.child[`] == cur then
5: cur ← neighRec(γ, cur.parent,u, b)
6: `← `⊕ d
7: if cur has children then
8: cur ← cur.child[`]
9: end if

10: else
11: Let ` ∈ U2 such that cur.parent.child[`] == cur
12: cur ← cur.parent
13: `← `⊕ d
14: cur ← cur.child[`]
15: end if
16: return cur

www.manaraa.com

26

x

10

0 111

0 11 0 111

01

0

00

1

11
1 1

11

1

(b)(a)

q(01) = 1 q(11) = 0

y

x

01
11 00

10

0011
0110

0011
01

10
0011

01

n

n

1

2

y

Figure 3.3 Tree and physical representation of γ = (R, σ) with
R = {01, 11, 0001, 0000, 0010, 001101, 001111, 001100, 001110, 1001, 1011, 1000, 1001}
and σ = {(01, 1), (11, 0), (0001, 1), (0000, 0), (0010, 1), (001101, 1), (001111, 1),
(001100, 0), (001110, 1), (1001, 1), (1011, 1), (1000, 0), (1001, 1)}. The cell
marked by x denotes an example cell we find the north neighbor of, y. ni
denotes internal, data structure tree nodes encountered in Example 3.2.1.

www.manaraa.com

27

cannot be found (i.e. we trace back to the root of the tree), there is no neighbor to

the north so return ⊥.

2. Traverse to the parent of this node (n2 in Figure 3.3). Again, if such a parent does not

exist, return ⊥.

3. “Flipped” direction ` is identified and we go to the sibling in that direction. In our

example, we want the sibling cell directly to the north of n1, y.

4. Traverse to the child of this sibling in the “flipped” direction from the direction we

took to reach this point until we run out of children. We trace the edges used to reach

n1 but flip the north/south direction. Intuitively, we’re following fissions as deep as we

can into the cell north of our original cell x by always going to the southeast child. In

our example, we are already at a most-fissioned element of γ in the subtree rooted at

y.

5. If the result y has no children, we return y. Otherwise y represents a cell that has

fissioned more than x by this configuration. If y’s children’s children exist to the flip

direction, we return ⊥ as the cell has fissioned too much to be read in our model. Else,

we return the child of y corresponding to our input b ∈ {0, 1}.

We now prove the correctness of Algorithm 2.

Lemma 3.2.2. Given an MRCA cell Q, direction u, configuration γ, and child index b,

Algorithm 2 correctly returns νγ,Q(u, b) as the neighbor state to direction u (cell b) of x.

Proof. Let x’s neighbor to direction u be xu. There are four classes of cases to consider

when finding xu.

Case 1. x has no neighbor as it is at the edge of [0, 1]2. We have defined the neighbor as having

state ⊥ in this case. If x has no neighbor in direction u then it is to the direction u in

www.manaraa.com

28

any fission. Thus we will always be able to find an i ∈ set(u) until we reach the root,

at which point Algorithm 3 finds that x.parent is null and consequently Algorithm 2

returns ⊥.

Case 2. x has neighbors that are the result of 2 or more fissions than x. νγ,Q(u, b) defines the

neighbor as having state ⊥. This case is handled by explicitly testing in Algorithm 2

if the returned value cur must still fission two or more times to reach an actual cell

after fissioning an equal number of times from the shared ancestor with x. If this is

true, Algorithm 2 returns ⊥. Thus this case is treated as case 4 until the final test for

being a leaf in the tree representation of γ and returns the correct value in this case.

Case 3. By the same reasoning as in case 2, if x has neighbors that are the result of exactly

one fission more than x, we correctly post-process the return value from Algorithm 3

to select the correct neighbor cell using index b.

Case 4. x has neighbors that are the result of the same or fewer fissions than x. We will

show that xu is found to be a neighbor in Algorithm 2 by induction on the number of

recursions done by Algorithm 3.

The base case is that xu and x are siblings in γ. There is no recursion to find xu and

the last conditional block of Algorithm 3 is executed. There will not be an ` ∈ set(u)

such that cur.parent.child[`] == cur because xu is in direction d from x at the current

fission level and cur cannot be in direction d. Thus, according to Algorithm 3, cur

becomes the shared parent of x and xu. The next step flips ` by u and sets cur to

the child xu. The flip takes the fission direction of x and changes only the direction of

concern. xu exists and has no children so we correctly return q(xu) from Algorithm 2.

We now examine the inductive case where xu and x are not siblings but are nonetheless

neighbors. Assume through induction that calls to find the neighbor of x’s parent will

return an ancestor of xu as it must be the neighbor to direction u of x’s parent.

www.manaraa.com

29

By the principle of induction, x’s parent is not null since xu exists and therefore

shares an ancestor with x. Note that x is a child to direction u in its parent’s fission

else we would enter the base case. By the inductive hypothesis, the recursive call

neighRec(γ, cur.parent,u, b) sets cur so it refers to a cell that has xu in it’s subtree.

Call this cell p(xu). If xu were not in p(xu)’s subtree, it would not be to direction u

from x’s parent and would not be adjacent to x in the physical interpretation.

After the recursion is complete, cur is set to the ` child of p(xu). Thus, when we flip `

by u, we take cur to be the child of p(xu) in the direction closest to x if p(xu) fissioned.

Otherwise there is no change in cur. We now move cur to the child in direction ` of

p(xu) which is xu. So Algorithm 3 returns xu.

Finally, we verify Algorithm 2 correctly returns σ(xu) given Algorithm 3 is correct.

Clearly cur 6= null. By the principle of induction, cur represents a node of depth at

most equal to x in C. Since we assumed for this case that xu is larger than or equal

in size to x, we correctly return σ(xu) = σ(cur).

We now discuss MRCA transition functions and configurations. If the value of transition

function δ is a single value in S, Q does not fission and changes to that state. If the value

of transition function δ is (s1, s2, s3, s4) ∈ S4, then Q fissions into the four cells

3

Q 12Q

4QQ

and each cell Qi is assigned a state si. The extended transition function of an MRCA

A = (S, δ, s) is the function

δ∗ : CONFIGA → CONFIGA

defined as follows. For each γ = (R, σ) ∈ CONFIGA, we set δ∗(γ) = (R′, σ′), where

www.manaraa.com

30

(i) R′ is obtained from R by replacing each cell Q for which δ(νγ,Q) = (s1, s2, s3, s4) ∈ S4

with the four cells Q1,Q2,Q3, and Q4 that are the upper right, upper left, lower left,

and lower right quadrants, respectively, of Q; and

(ii) σ′ is obtained from σ by setting each σ′(Qi) = si when Q1,Q2,Q3,Q4 are as in case (i)

and setting σ′(Qi) = δ(νγ,Q) when δ(νγ,Q) ∈ S.

The start configuration of an MRCA A = (S, δ, s) is the configuration γ0 = ({[0, 1]2}, σ)

where σ([0, 1]2) = s.

The computation of an MRCA A = (S, δ, s) is the orbit of γ0 under δ∗, i.e., the infinite

sequence γ0, γ1, γ2, . . . in CONFIGA, where each γt+1 = δ∗(γt).

We have now specified the basic features of the MRCA model. Additional features may be

added for specific purposes. For example, in Section 3.3 we use this model to color portions

of [0, 1]2 in a monotone way (i.e. without color changes once a cell’s color is set). For this

purpose, we define a (monotone) k-coloring MRCA to be a 4-tuple A = (S, δ, s, c), where

(i) (S, δ, c) is an MRCA;

(ii) c : S 99K [k] is the state-coloring partial function; and

(iii) for all q ∈ dom(c), ν ∈ NS, and q′ ∈ S, if q′ is δ(q, ν) or a component of δ(q, ν), then

q′ ∈ dom(c) and c(q′) = c(q).

Condition (iii) ensures that δ never updates an already-colored cell in such a way as to alter

or remove the color of any part of that cell. For each i ∈ [k], the set colored i by a k-coloring

MRCA A = (S, δ, s, c) is the set Si(a) defined in the now-obvious way.

Example 3.2.3. For each n ∈ Z+, let

Qn = Q

(
2n,

4n − 4

3
, 0

)
=

[
1

3
(1− 41−n),

1

3
(1− 4−n)

]
×
[
0, 4−n

]
,

www.manaraa.com

31

4

3
1

1

Figure 3.4
∞⋃
n=1

Q

(
2n,

4n − 4

3
, 0

)
colored in.

and let X =
∞⋃
n=1

Qn. Consider the 1-coloring MRCA A = (S, δ, s, c), where S = {s, t, u, v};

c(v) = 0; c(s), c(t), and c(u) are undefined; and, for all ν ∈ NS,

δ(s, ν) = (t, t, u, t),

δ(t, ν) = t,

δ(u, ν) = (t, t, v, s),

δ(v, ν) = v.

It is easy to see that S0(A) = X, as depicted in Figure 3.4 with color 0 appearing as green.

3.3 MRCA Characterization of Computability

This section presents an MRCA characterization of computability under the small-boundary

hypothesis of Section 3.1.

We define a set X ⊆ [0, 1]2 to be MRCA-computable if there exist open sets G ⊆ X and

H ⊆ [0, 1]2rX, with G∪H dense on [0, 1]2, and a 2-coloring MRCA A such that S1(A) = G

www.manaraa.com

32

and S0(A) = H. With the convention of 0 being “red” and 1 being “green,” this is the

definition that we gave in the introduction.

Our proofs use the following coloring notion. We define a (cellular) k-coloring of [0, 1]2

to be a partial function ψ : Q 99K [k] satisfying the consistency condition that, for all Q1,

Q2 ∈ dom(ψ),

Q1 ∩Q2 6= ∅ ⇒ ψ(Q1) = ψ(Q2).

We call ψ(Q) the color of cell Q in the coloring ψ. For each i ∈ [k], the set colored i by

ψ is then

Si(ψ) =
⋃
{Q | ψ(Q) = i} .

The following technical lemma is a central part of our argument for the main theorem of

this chapter.

Lemma 3.3.1. If ψ is a cellular k-coloring that is computable, then there is a k-coloring

MRCA A such that, for each i ∈ [k], Si(A) = Si(ψ).

We now prove the main result of this chapter, deferring proof of this lemma.

Theorem 3.3.2. If X ⊆ [0, 1]2 is a set whose boundary is computably nowhere dense, then

X is computable if and only if X is MRCA-computable.

Proof. Let X ⊆ [0, 1]2 be a set whose boundary is computably nowhere dense.

Assume that X is computable. Then, by Theorem 3.1.2, there exist computably open

sets G,H ⊆ [0, 1]2 such that G∪H is dense on [0, 1]2 and X is a separator of G and H. Since

G and H are computably open, there exist c.e. sets AG,AH ⊆ B such that G =
⋃
AG and

H =
⋃
AH . By standard techniques, each open ball B ∈ B can be written as a countable

union of dyadic squares Q ∈ Q. Since this process is effective, it follows that there exist

c.e. sets RG ⊆ Q and RH ⊆ Q such that G =
⋃
RG and H =

⋃
RH . Since G and H are

www.manaraa.com

33

disjoint open sets, every cell in RG must be disjoint from every cell in RH . Hence the partial

function ψ : Q 99K [2] defined by

ψ(Q) =

1 if Q ∈ RG

0 if Q ∈ RH

undefined otherwise

is a well-defined cellular 2-coloring of [0, 1]2. Clearly, S1(ψ) =
⋃
RG = G and S0(ψ) =⋃

RH = H. Moreover, sinceRG andRH are c.e., ψ is computable. It follows by Lemma 3.3.1

that there is a 2-coloring MRCA A such that S1(A) = S1(ψ) = G and S0(A) = S0(ψ) = H.

Conversely, assume that X is MRCA computable. Then there exists computably open

sets G ⊆ X and H ⊆ [0, 1]2 rX, with G ∪H dense on [0, 1]2. Then X is a separator of G

and H, so X is computable by Theorem 3.1.2.

Proof of Lemma 3.3.1.

We now discuss how to compute a k-coloring MRCA A such that Si(A) = Si(ψ) for any

i ∈ [k] and computable cellular k-coloring ψ : Q 99K [k]. Since ψ is computable, there exists

a Turing machine M with right-infinite tape that identifies the correct color of that square

with respect to ψ (if it exists) given an encoding of a dyadic-width square Q ∈ Q by changing

to that color at the conclusion of its computation†.

We translate M into a one-dimensional CA that extends to the right. It is clear that

a one-tape Turing machine with infinite cells to the right can be simulated by a CA with

infinite cells to the right. We call the state of the cells to the right of computation cookie

states c for reasons to be explained later. We also slightly alter that construction as follows.

(1) Add an extra cell to the left end of the CA. This reserves space to assist in coloring and

provides a buffer between units of computation. Call this the “rabbit hole” [8] as it

becomes smaller and smaller as computation progresses (or as we “fall into” it).

†Note that “coloring” in this view is an infinite process as the machine has an infinite tape.

www.manaraa.com

34

(new cell)(new cell)
TM

TM
TM

3TM

2TM
TM 2

TM

1TM
1

3

4TM

2
1

Figure 3.5 Use and creation of space for Turing machine computation by “falling down
a rabbit hole.” Note that the rabbit hole is the only cell to fission each time
while the rightmost cell is where new computation can appear.

(2) Lay out the remaining cells such that each cell is twice the length and width of the cell

to its left and half the length and width of the cell to its right.

(3) Add rules to allow for both periodic and computation-prompted fission. Importantly,

the latter rules should not extend to fissioning to create more cells to color.

(4) Add rules to pass a copy of the address information off the right end of computation.

We call such a modified rule set a computational unit function CM and denote its opera-

tion on an input dyadic square Q(n, i, j) by CM(Q(n, i, j)). Reserve the “rabbit hole” cell as

described in (1) above and lay out the remaining cells according to (2). This setup is shown

in Figure 3.5. Reserve the last cell on the right as a signal cell for fission computation. This

initial configuration given encoded input for any dyadic square Q(n, i, j).

We now address the two, more complicated modifications (3) and (4) in more detail. The

former creates more space for the current and child computational units (via prompted and

periodic fission, respectively) while the latter guarantees that computation CM(Q(n, i, j))

will eventually occur for any n, i, j ∈ N.

Fission for more computational space is prompted when a computational unit attempts

to use the last space on the right for non-coloring reasons. This triggers a signal being sent

www.manaraa.com

35

left to the “rabbit hole” which fissions. This is shown in Figure 3.5 as the pink cell splitting

and taking on the state of the cell to the right as it’s lower-left cell.

At the next step, the cell to the right of the rabbit hole then reads that the rabbit hole

has fissioned and taken on its state. Because the signal to make more space had to come

through this cell to arrive at the rabbit hole, computation has already frozen to complete

this process. So the cell to the right of the former rabbit hole can take on the state of the

cell to its right. In this way, every cell eventually takes on the state of the cell to its right

except the last cell, which now can take on the state dictated by CM .

Periodic fission can be handled similarly by selecting a transition that occurs with guar-

anteed regularity in the computation of CM and instead send a signal state exactly as if

fissioning for more computational space before continuing computation. If there is no such

naturally-occurring transition, we can easily add a counter to the end of CM to trigger this

fission. The signal is sent to the left end of the computational unit and triggers the same set

of transitions as when the computational unit requires more space.

The only difference from fission for computational reason is that, when the fission process

is complete, we change the now-empty rightmost cell to the cookie state c. This cell will

now not be used for computation and, if additional space is required by the computation, it

will fission if there is only cookie states to its right. However, if the computation concludes

that CM(Q(n, i, j)) should be colored k, these cookies states will also change that color —

they serve the function of marking the right edge of this computational unit.

The process of passing address information as per modification (4) from the view of

the computational unit is straightforward. Simply add a set of rules to send a copy of the

address information to the right before the computation described by M begins. The process

of initializing a computational unit with input will be written so that there is enough space

to do this without additional fission. This address information is then used by A, the full

MRCA rule set, to initialize new computational units.

www.manaraa.com

36

Figure 3.6 Initial state of each CM with initial state CM(Q(0, 0, 0)) rotated to show the
direction of computation in each computational unit. The colored area is
the space of that unit’s computation.

Before describing the process of new computational unit creation, we pause to describe

how the one-dimensional computational units CM(Q(n, i, j)) are laid out on the two-dimensional

grid. Four identical computational units CM(Q(n, i, j)) are laid out as shown by the orien-

tation of CM(Q(0, 0, 0) in Figure 3.6 for each input Q(n, i, j). The right computational unit

is computing left to right and each of the other three units are rotated 90 degrees clockwise.

All rules included in CM are also rotated 0, 90, 180, and 270 degrees and new symbols

are used for each direction (e.g. 0 becomes 00, 090, 0180, and 0270) to get a consistent set of

rules for each direction. For simplicity, we will continue to discuss computational units as if

they are oriented left-to-right (e.g., Figure 3.5).

The MRCA A is initialized with four computational units as shown in Figure 3.6 and

the first set of rules for A concerns taking the address information available at the right end

of each computational unit and using that information to initialize the child computational

units. This state is shown in more detail for one computational unit CM(Q(1, 0, 0)) in

Figure 3.7.

A starts the process with transitions of cells above the cell marked u to fission to an

www.manaraa.com

37

0

m

C
0

0
x

u

0

X

Figure 3.7 Complete initial state of CM(Q(1, 0, 0)) including address (with x and y
coordinates separated by an X), state C identifying the right edge of com-
putation, a copy of the address for passing, a signal cell u to start passing
address information up, and a cell in state m to denote the vertical cen-
ter of any future child pinwheel (which would be 4 computational units for
CM(Q(2, 1, 1)) in this orientation). Note that the space above the current
computational unit contains a mark where the center of the dyadic cell above
CM(Q(1, 0, 0)) appears. All cells to the right of the C cell will become cookie
cells. Note that, unfortunately, the left end quickly becomes unreadable.

www.manaraa.com

38

appropriate size to read the incoming address state information. This information is sent

upwards until meeting the mark placed during initialization of this computational unit is

found.

The address information is then used by rules in A to construct a new set of four compu-

tational units with slightly different addresses as well as set marks . Specifically, the compu-

tational unit for Q(n, i, j) generates computational units to compute Q(i+ 1, 2i+ 1, 2j + 1),

Q(i+ 1, 2i, 2j + 1), Q(i+ 1, 2i, 2j), and Q(i+ 1, 2i+ 1, 2j). These four computational units

appear as shown in Figure 3.8, where each “parent” unit sends address information north

(relative to its rotation). Note that, by this construction, a north-to-south child computa-

tional unit extends back to the parent computational unit and shares a cell in a cookie state

as part of their computational space. This non-interference is part of why we reserve cells

in cookie states.

The reason we create duplicate, rotated computational units and set cells to a cookie

state is to simplify the process of coloring. There are two processes used to color cells after

a computational unit has decided a color for space Q(n, i, j). A cell will be colored when

either of the following occurs.

(A) A cell is part of the space of a computation that concluded Q(n, i, j) should be colored.

(B) A cell is the neighbor of two colored squares that differ from it horizontally and vertically

with the exception of rabbit hole cells.

When a computational unit concludes that input square Q(n, i, j) must be colored, the

signal is sent along the computational unit’s cells away from the rabbit hole i.e., to the right

in left-to-right computation. This signal and coloring continues to the edge of CM(Q(n, i, j))

through the cookie states, completing coloring process (A). When four rotated computa-

tional units finish this coloring process, we are left with colored lines of cells as shown in

red in Figure 3.9. Note that there are “shared” cookie cells between parent and one child so

www.manaraa.com

39

M M

M MC (n+1,i,j’) C (n+1,i’,j’)

C (n+1,i,j) C (n+1,i’,j)

C (n,i,j)M

Figure 3.8 How the child computational units of CM(Q(n, i, j)) are laid out where
i′ = 2i + 1 and j′ = 2j + 1. The green lines along each axis emanat-
ing from the parent computational unit represent cookies states. Although
these lines appear to cross the child units, the child units will preserve the
cookies of their ancestors.

www.manaraa.com

40

Figure 3.9 Example coloring of a dyadic square with red indicating the computational
and cookie states of the coloring computation and pink indicating the com-
pletion of coloring via neighbor examination.

the coloring of each computational unit must take into account the direction from which it

received color information when changing color.

To complete coloring the dyadic square, our MRCA A has a general rule (B) that, if a cell

has an k-colored neighbor that differs from it horizontally and another k-colored neighbor

that differs from it vertically, it becomes that color. If one computational unit concludes its

input dyadic square will be colored, all of them will because they are performing the same

computation. Starting with the rabbit hole of each unit, each of the cells will have a north-

south neighbor and an east-west neighbor that change color as part of this computation.

Initially, the cells adjacent to two “rabbit holes” will be colored followed by its neighbors in

two directions and so on until only and exactly the required dyadic square is colored. This

is shown in Figure 3.9 in pink.

An important exception to the coloring by process (B) is that rabbit holes never change

color according to process (B). A rabbit hole will not change color for any other combination

www.manaraa.com

41

of neighbor colorings to ensure the rabbit hole is colored only by its own computational unit

or that of a child computational unit covering this computational unit’s space (i.e., not

a neighboring computational unit or any other combination of child, sibling, or nephew

computational units).

We now briefly discuss the case of a child computational unit coloring its square when the

parent computation has not concluded. For example, in the lower-left corner of Figure 3.8,

CM(Q(n+ 1, i, j)) may conclude before CM(Q(n, i, j)) does. To see our approach colors only

the correct child dyadic-width square and no others, we consider two cases.

(1) Parent CM(Q(i, x, y)) will continue computing forever.

(2) Parent CM(Q(i, x, y)) will result in a coloring.

In case (1), there is no loss in coloring the computational area of the child computation

because it will not result in coloring the entire square Q(n, i, j): other child computational

units of CM(Q(n, i, j)) will never result in a coloring with process (A) by assumption nor

with process (B) because the rabbit hole will never change color. Even in the case of

CM(Q(n+1, 2i, 2j)) and CM(Q(n+1, 2i+1, 2j+1)) in Figure 3.8 changing color, the rabbit

holes of CM(Q(n+1, 2i+1, 2j)) and CM(Q(n+1, 2i, 2j+1)) will be uncolored to prevent the

coloring of the entire square. Thus, neither methods of coloring will color other, incorrect

child computational units.

In case (2), the child computational unit must be colored the same color as CM(Q(n, i, j))

by ψ. Coloring of the dyadic square of that child computational unit will halt the compu-

tational unit of CM(Q(n, i, j)) in that space. When the other three computational units

for CM(Q(n, i, j)) begin coloring process (A), they can use the coloring resulting from the

child’s coloring to color the rest of the space Q(n, i, j) using coloring process (B).

It is reasonable to ask whether the fissions caused by child computation can “outpace”

the speed at which cells are colored. We can guarantee this coloring will eventually occur

www.manaraa.com

42

because the fissions prompted by computational units cannot exceed the speed of the coloring

process. Thus each child computational unit will be able to color its computed dyadic square.

Through this procedure, the entire unit square will be colored green or red by computation

of dyadic squares in the limit of these MRCA rules. Si(A) = Si(ψ) for any i ∈ [k] and

computable cellular k-coloring ψ : Q 99K [k] because the computational units of A compute

Si(ψ) and color regions i in dyadic squares as needed.

3.4 MRCA Characterization of Polynomial-time Computability

Given our main result in Theorem 3.3.2, it is natural to ask: How does the set of poly-

time computable sets [5] relate to the set of MRCA poly-time computable sets? In order to

discuss feasible MRCA computation, we use the idea of poly-time open sets.

Definition 3.4.1. Given a set X ⊆ [0, 1]2, let dH denote the Hausdorff distance between

two sets and, for any t ∈ N, let At ⊆ B be a set of balls such that
⋃
At ⊆ X and

dH

(⋃
B∈At

B,X

)
≤ 2−t (call At a t-approximate set of balls for X).

A set X ⊆ [0, 1]2 is poly-time open if there is a polynomial p(n) such that for all t ∈ N

we can decide if a ball B(q, 2−t) is in At in time p(t). That is, the set {B | B ∈ At} ∈ P .

Note that we are no longer enumerating balls (as in the definition of computably open)

but rather deciding if the ball belongs in the set. This allows us to use the parallelism of

MRCAs to its fullest in defining MRCA poly-time computable sets.

Definition 3.4.2. X ⊆ [0, 1]2 is MRCA poly-time computable if there exists poly-time open

sets G ⊆ X and H ⊆ [0, 1]2rX, with G∪H dense in [0, 1]2, and a 2-coloring MRCA A such

that S1(A) = G, S0(A) = H. All other points, including points on the topological boundary

of X, remain uncolored throughout the execution of the MRCA.

We now extend the definition of computably nowhere dense sets to poly-time nowhere

dense sets.

www.manaraa.com

43

Definition 3.4.3. Z is poly-time nowhere dense if there is a poly-time function f : B r

{∅} → B r {∅} such that, for all B ∈ B r {∅}, f(B) ⊆ B r Z.

We are now equipped to discuss the feasible version of Theorem 3.1.2.

Theorem 3.4.4. If X ⊆ [0, 1]2 is a set whose boundary is poly-time nowhere dense, then

the following two conditions are equivalent.

(1) X is computable in poly-time.

(2) X is a separator of two poly-time open sets whose union is dense.

Proof. First note that, by the poly-time version of Observation 3.1.1 [31]‡, there is a poly-

time open dense set D ⊆ [0, 1]2 such that D∩ ∂X = ∅. Since D is poly-time open, there is a

set D ⊆ B such that D =
⋃
D. Since D∩∂X = ∅ and {X◦, ([0, 1]2 rX)◦, ∂X} is a partition

of [0, 1]2, it must be the case that every ball B ∈ D satisfies B ⊆ X◦ or B ⊆ ([0, 1]2 rX)◦.

(2)⇒ (1): Assume the hypothesis of poly-time open sets G,H ⊆ [0, 1]2 such that X is a

separator of G and H and G ∪H is dense on [0, 1]2. Let AGr , AHr ⊆ B be the set of balls

witnessing that G and H are poly-time open given a radius r. Let f : (Q∩[0, 1])2×N→ {0, 1}

be computed by Algorithm 4.

Note that this is nearly the same function f appearing in Algorithm 1 except that we

iterate B ∈ D rather than B ∈ B which has no effect on the correctness of f . We omit

further argument of the correctness of the function based on the correctness of Algorithm 1.

Each check of B ∈ AGr and B ∈ AHr takes polynomial time in r and D itself is poly-time

open so f can be computed in poly-time.

(1)⇒ (2): We now show that the set

DG = {B ∈ D | B ⊆ X◦}
‡In [31], a more general notion of Γ-nowhere dense over languages is used. If we set Γ to the set of

polynomial time functions and generalize the results from languages to the set [0, 1]2, a poly-time version of
Observation 3.1.1 follows.

www.manaraa.com

44

Algorithm 4 f(q, r) = y
Input: (q, r) ∈ (Q ∩ [0, 1])2 × N.
Output: y ∈ {0, 1}.

1: Find B ∈ D such that
2: (i) B ∈ AGr and B ∩B(q, 21−r) = ∅
3: or
4: (ii) B ∈ AHr and B ∩B(q, 2−r) 6= ∅
5: if (i) holds then
6: return 1
7: else
8: return 0
9: end if

is enumerable in poly-time given X is poly-time computable in order to show that G = ∪DG

is poly-time open. We know from the proof of Theorem 3.1.2 that

DG = {B(q, r) ∈ D | r = 0 orf(q, n(r) + 1) = 1} .

f is poly-time computable and we can find if B ∈ D in poly time because D is poly-time

open.

G = ∪DG is poly-time open because we can decide whether balls are in DG in poly-time.

Likewise, we can identify DH as evidence that H = ∪DH is poly-time open. The remaining

correctness arguments at the end of the proof of Theorem 3.1.2 shows that (2) holds.

To show our main result, we will need a similar technical lemma to Lemma 3.3.1 but this

time providing a poly-time bound.

Lemma 3.4.5. If ψ is a cellular k-coloring that computes ψ(Q(n, i, j)) in time t(n) for any

i, j, n ∈ N, then there exists a O(t(n)2 + n2)-time k-coloring MRCA A such that (for all

m ∈ [k]) Sm(A(Q(n, i, j))) = Sm(ψ(Q(n, i, j))).

We now state and prove the main result of this chapter, deferring proof of this lemma.

Theorem 3.4.6. If X ⊆ [0, 1]2 is a set whose boundary is poly-time computably nowhere

dense, then X is poly-time computable if and only if X is poly-time MRCA-computable.

www.manaraa.com

45

Proof. First, assume that X is poly-time computable. By Theorem 3.4.4, there exist poly-

time open sets G and H whose union is dense and that X separates. Set t ∈ N.

Because G and H are poly-time open, we can identify t-approximate sets of balls Gt ⊆ G

andHt ⊆ H as witness sets that G and H are poly-time open. As discussed in Theorem 3.1.2,

any set covered by a set of balls can be covered by a countable union of dyadic squares. Call

the set of such squares RGt and RHt for Gt and Ht respectively. By the same process used

to query Gt and Ht, it takes poly-time to query whether a given dyadic square is in RGt and

RHt (respectively). Now note that RGt and RHt are disjoint so

ψ(Q) =

1 if Q ∈ RGt

0 if Q ∈ RHt

undefined otherwise

is a well-defined cellular 2-coloring of [0, 1]2. RGt and RHt are decidable in poly-time because

G and H are poly-time open so ψ is poly-time computable. It follows by Lemma 3.4.5 that

there is a 2-coloring MRCA A such that, at time p(t) for some polynomial p, S1(A) =

S1(ψ) = Gt and S0(A) = S0(ψ) = Ht. Our result follows.

Conversely, assume X is MRCA poly-time computable. Then X is a separator of poly-

time open sets G and H. By Theorem 3.4.4, X is therefore poly-time computable.

Proof of Lemma 3.4.5.

It suffices to show that, given a Turing machine M in the class required by the proof of

Lemma 3.3.1 that computes ψ(Q(n, i, j)) in time t(n), the MRCA A constructed from M

given in the proof of Lemma 3.3.1 takes time O(t(n)2 + n2) to color Q(n, i, j).

We specifically compare the run time of M on an input Q(n, i, j) to the amount of time

it takes for MRCA A to color Q(n, i, j) green or red given in the proof of Lemma 3.3.1. Note

that, if M runs forever on input Q(n, i, j), A will also run CM on Q(n, i, j) forever.

www.manaraa.com

46

In order to compare the run time of M on input Q(n, i, j) to the time it takes for A to

color Q(n, i, j), without loss of generality we make the following simplifying assumptions:

(A) Address information is sent from each computational unit immediately before compu-

tation begins. Although our earlier proof is correct as long as address information is

sent at some point, this assumption simplifies time analysis without loss of generality.

(B) Each computational unit CM ’s set of starting cells is simply the input ixj to compute

Q(n, i, j). Additionally, i and j are encoded in n bit binary strings (Q(0, 0, 0) is encoded

by an empty string for i and j). Although each computational unit CM will typically

require more space to perform computation, we can add a constant number of rules

to CM to create the initial space M uses and any additional computational space is

included in either M ’s time t(n) or the amount of time fission takes.

(C) The starting set of cells for each computational unit will take up at most one cell less

than a quarter of the width of the dyadic cell it is computing. This means that all

computation takes place in the lower-left quadrant of its child dyadic square, leaving

space for a “pinwheel” of identical child computational units. This bounds the amount

of actual space that each computational unit uses.

(D) Periodic fission of computational units will occur every k ∈ N steps. This is considered

separately from fission for more computational space and does not change the operation

of the construction of Lemma 3.3.1 (where fission is specified as simply periodic).

Because of how M ’s computation is transformed into a computational unit CM , there are

two classes of considerations: Slowdown due to M ’s translation to CM and slowdown due to

modifications (1) through (4) in the proof of Lemma 3.3.1. We will consider computational

units in the standard orientation (e.g., as depicted in Figure 3.5). Units in other orientations

are completed in parallel so no additional time is taken.

www.manaraa.com

47

Fortunately, the direct translation of a right-infinite-cell Turing machine M to a one-

dimensional CA results in no slowdown. Likewise, each rule for the CA can be translated

into a rule for CM that ignores cells to it’s north and south.

Modifications (1) through (4) to create each CM in the proof of Lemma 3.3.1 do cause

a slowdown of CM relative to Turing machine M . Modifications (1) and (2) simply reserve

extra space and details a new layout to the cells so no slowdown in accrued. (3) directly

slows the computation down by a factor of k to allow periodic fission so the amount of time

that is spent computing the color of any Q(n, i, j) is bounded by kt(n).

As part of modification (3), we also must consider how often computation will prompt

fission. In the worst case, every one of the t(n) computational steps will require a fission

for more space. As per the description in the proof of Lemma 3.3.1, the signal must be sent

from the right edge to the left, the rabbit hole fissions, and then all the cells shift one cell

left before continuing. As the length of the entire unit is bounded above by t(n), this takes

at most 2t(n) + 1 = O(t(n)) steps. If we perform this set of steps for each of the t(n) steps

of computation, the total time for fission for computation is O(t(n)2).

We also must consider the amount of time spent before the creation of the computa-

tional units that compute Q(n, i, j). To decide inputs of precision n, appropriate ancestor

computations of precisions 1 through n−1 must exist in A. For example, to create the com-

putational unit for Q(3, 1, 10binary), the ancestor computational units with inputs Q(1, 0, 0)

and Q(2, 0, 1) must be created first. Note that, due to assumption (A), these computations

will not be complete before sending the address information onwards so we will only consider

the time to pass address information to each child computational unit.

Let us consider an arbitrary ancestor computational unit computing Q(m, k, l) and the

process whereby a child computational unit computing Q(m+ 1, k′, l′) is created where k′ is

2k or 2k + 1 and l′ is 2l or 2l + 1, depending on our final i and j respectively. The process

www.manaraa.com

48

...

u

0
X0

m

Figure 3.10 The initial configuration of the right computational unit CM(Q(1, 0, 0))
before creation of the computational units for Q(2, 1, 1). u denotes a signal
state above and to the left of which the child “pinwheel” will appear. The
gray arrow indicates the direction that the address information is passed
and the mark m denotes the center of the child computational unit pinwheel
placed by A during initialization of CM(Q(1, 0, 0)).

of creating a child computational unit computing Q(m + 1, k′, l′)§ can be decomposed into

three processes: passing the address to the right, passing the information up, and creating the

“pinwheel” of child computational units. The (parent) computational unit has 2m+ 1 cells

before computation begins and does not include the cell directly below where the “pinwheel”

of child computational units will be placed (due to the assumptions above). This initial setup

is shown in Figure 3.10.

To address the first question of passing address information to the right, we need to

consider what size the cells are in the parent computation as this will dictate how many steps

it will take to send the left-most bit of the address to the point at which that information

will be sent up. It takes at least 2m+1 steps to pass this information over to the cell marked

§Note that this procedure focuses on the creation of the upper-right child “pinwheel” of computational
units but the same arguments apply if we are interested in any other child pinwheel of computational units.

www.manaraa.com

49

C in Figure 3.10 because the first bit of the original input must pass through X, Y , and

the dividing bit (character X in assumption (B) above). As this happens before any other

computation by assumption (A), there are exactly 2m+ 1 states to pass.

The time to pass information up is 2(2m + 1) because each new address passed north

to the west of the space marked u in Figure 3.10 will fission, causing a one step pause

in the passing process for each passing step. Note also that, in order for initialization of

the other computational units in the same child pinwheel, the other cells near the center

of the pinwheel will also fission but this can be done in parallel with passing the address

information.

Last, we analyze how long it takes to initialize a child pinwheel. Each child computational

unit will have size 2m + 3 as a bit is added to both x and y coordinates of the ancestor’s

address. As noted above, fission of the other “spokes” of the pinwheel of computational

units must take place as address information is sent in order for communication to remain

possible. Thus, the time to send the address information through the rabbit holes of the

child computational units and initialize them is 2m+3. Thus, the time to complete all three

processes that end with a child pinwheel of computational units is 2m+1+2(2m+1)+2m+3 =

8m+ 6.

We now have what appears in the upper-right quadrant of Figure 3.8, the unrotated

computational unit. The ancestor computational unit continues computation and the new,

child computational units can begin by sending their address information to create a new

child pinwheel of computational units.

Our original question was the length of time it takes to create and compute the color of

an arbitrary Q(n, i, j). To find this, we must take the summation of the time it takes each

ancestor to send their address information to child computational units until the computa-

tional units for Q(n, i, j) are initialized and complete. This summation considers starting

with a cell with address information of size 3 (i.e., 0x0, 0x1, 1x0, or 1x1 depending on the

www.manaraa.com

50

identity of i and j) and finishes with ixj ready to compute. Since each increase in address

size increases m by two (adding one bit each to the x and y coordinate), it is characterized

by the summation

2n+1∑
m=3

 0 if m even,

8m+ 6 otherwise,

as only odd-length coordinates occur. Now note that this summation is equivalent to

3(2n+ 1) + 2− (6 + 2) +
2n∑
m=2

 0 if m even,

8m+ 6 otherwise,

which is equivalent to just doubling all values of m. Note that, by assumption (A),

CM(Q(n, i, j)) has to send its address information to the east before starting its own com-

putation so this creates a 2n+ 1 step delay included below.

(
n∑

m=1

16m+ 12

)
+ 18n− 7 = 16

n∑
m=1

m+ 12n+ 18n− 7

= 16

(
n2 + n

2

)
+ 30n− 7

= 8n2 + 38n− 7

= O(n2).

So the full run time of getting to the computation of CM(Q(n, i, j)) and then complete

that computation is O(t(n)2 + n2).

3.5 Similar Work to the MRCA

In this section we consider three classes of related work: notions similar to nowhere

dense sets used to characterize “small” boundaries, cellular automaton models similar to the

www.manaraa.com

51

MRCA using fission, and cellular automaton models with a name similar to or exactly the

same as the MRCA.

We note that Myrvold [36] and Parker [40] have considered notions somewhat similar to

MRCA-computability. (See also [41].) Myrvold’s ”decidability ignoring boundaries” differs

in that there is no small-boundary hypothesis, and the sets G and H are required to be the

interiors of X and its complement, respectively. The latter requirement is, for our purposes

here, unduly restrictive: We show in the Turing-gapped comb of Section 3.1 a computable set

with computably nowhere dense boundary whose interior is not computably open. Parker’s

”decidability up to measure zero” requires the set of points not correctly ”decided” to be

small in a measure-theoretic sense, while we require it to be small in a topological sense.

Other cellular automaton models use concepts similar to fission to address issues other

than real computation. Zeno machines [11] (or Accelerating Turing Machines) are Turing

machines that take 2−n steps to complete the nth computational step. Infinite time Turing

machines [18] (ITTMs) generalize Zeno machines by allowing a limit state wherein every cell

is set to the limit supremum of the values previously displayed in that cell. These models

subdivide time in a way similar to how MRCAs subdivide space. A Scale-Invariant Cellular

Automata (SCA) [50] create a lattice graph of cells where each level is half the width of the

preceding level. Cells at depth i perform computation every 2−i time units. In contrast, the

MRCA sets cell size more non-uniformly than according to depth in a lattice and all cells

update at each time step.

There are a number of similar models to the MRCA applied to other areas of research

as surveyed by Dunn ??. Specifically, Kiester and Sahr [21] implement a Discrete Global

Grid Systems (DGGS) [49] that uses the concept of cells of different sizes communicating

but each cell of a given size appears on its own layer and is able to read cells both below and

above it (i.e., larger and smaller cell sets). They generalize this idea to computation over

incomplete topologies (that is, some cells are designate “live” while others are “dead”) so

www.manaraa.com

52

that each cell may have a different number of neighbors. When applied to the area of urban

systems [21] and landscape ecology ?? this allows us to focus on areas of interest with more,

smaller cells while computing very little over less interesting areas. They also generalize to

hexagonal cells and overlay their topologies on spheres.

This model is similar to a supervised version of the MRCA in that the topology of cells

is set from the outset. Thus, their rules need only be concerned with state changes rather

than also including fission instructions. We also simplify the model in a sense by changing

the lower-resolution cell into its child, higher-resolution cells rather than letting both exist

at the same time and be able to communicate with each other.

There are also early models by Nagel [37; 38] that allow us to consider cells of multiple

resolutions at the same time to simulate increasing traffic density. However, these approaches

seem to be ad hoc mechanisms using probabilistic cellular automata of varying density rather

an a general framework for computation.

www.manaraa.com

53

CHAPTER 4. MULTI-RESOLUTION CELLULAR

AUTOMATA SIMULATION

4.1 Introduction to the MRCA Simulator

We now show how the MRCA model defined in Chapter 3 can be actualized in software.

We use the Java programming language (version 1.6) to build a simulator that takes as input

an initial state and a set of MRCA transitions (specified by what we call rules) and creates

an MRCA based on that input. This simulator is designed so both a casual user can easily

write MRCA rules for simple computation and a more ambitious user can implement the

constructions discussed in Chapter 3 and more.

4.1.1 Simulator Interface

The simulator starts in step 0 with an interface similar to that shown in Figure 4.1. The

exact identity of the state of the initial cell depends on the rule file we will discuss shortly.

The input rules file must be named MainConstruction.txt by default but any file name

can be used if provided as a command-line parameter to the program.

The simulator runs in two threads, one for computing MRCA configurations and the

other for displaying them. The graphical interface is the primary way in which the user

examines MRCA configurations. The computational thread interacts with the user directly

only by sending errors to the command line if there is a problem with the rule set.

The main portion of the graphical interface is a view of the current MRCA configuration.

www.manaraa.com

54

Figure 4.1 Example screenshot of the MRCA simulator at startup (scaled down) in
Mac OS X 10.6.7.

www.manaraa.com

55

Cells are edged in grey with the state names in black in the lower-left corner of each cell.

In Figure 4.1, it is a single cell with state s. Along the extreme bottom from left to right

is: a button to make the graphical interface “run” by showing successive configurations of

the MRCA specified by the input rules; the file name of the input rules, buttons to view the

previous and next configuration (<< and >>, respectively); buttons to increase and decrease

the zoom factor with which we are viewing the cells (+ and -, respectively); and a turn

counter text box. The turn counter is automatically updated when you change configuration

and can be used to jump between configurations. The turn number after the slash indicates

which turn the computational thread has computed so far (in Figure 4.1, step 83).

In the upper-left corner is an Options menu with two items: Save State sends informa-

tion about the current configuration to the command line that you launched this program

from (also accessible via Control-S) and Reload Rules Only erasing the current rule set and

reloads them from file (also accessible via Control-R). The last item is useful but tricky

when developing a rule set as all configurations after the current one is erased but not any

preceding configurations. This saves time by not recalculating all prior configurations but

introduces the possibility that configurations are displayed that cannot be generated by the

current rule set (i.e., were generated by a previously-loaded rule set).

One can also interact with the main view of the cells directly. Along the lower and right

edge are scroll bars and we can also scroll using the mouse by clicking, holding, and dragging

in the opposite of the desired direction. Note that the screen will not update in real time,

instead waiting until you release the mouse, to avoid jitter on some computers. Last, you

can zoom in by double-clicking on an area of the screen.

Those interested in using the simulator for more than casual development are advised to

read the first 50 lines of the Java class MRCAControlPanel as shown in Appendix A. These

options specify the following parameters of the program:

• SKIP TO STEP specifies the first step that the user will see upon loading the simulator.

www.manaraa.com

56

The simulator will attempt to load this step immediately upon program start and send

an error to the command line if it cannot. The computational thread of the simulator

will continue to generate more configurations than this count.

• LAST STEP specifies the last configuration that the computational thread will com-

pute. We include this option because the computation thread will normally continue

to compute configurations forever. If the rule set is sound, this will cause it to use

more memory and CPU time over time to complete each configuration computation.

Setting this option to a positive number causes the simulation to stop at the specified

step instead.

• WIDTH, HEIGHT specifies the width and height of the control area at the bottom of the

screen.

• DRAW WIDTH, DRAW HEIGHT specifies the width and height of the configuration display.

• fontWidth specifies the maximum font height for state symbols. If state symbols are

too small (large), increase (decrease) this value (respectively) to obtain more viewable

symbols.

• viewOffsetX, viewOffsetY, and initialZoom specify initial viewing area and zoom.

• RUN DELAY specifies how long (in milliseconds) to wait between displaying configura-

tions when the user clicks the RUN button.

4.1.2 Simulator Rule File Format

In order to specify the behavior of the MRCA, the user provides a rule file that is primarily

composed of rules detailing groups of MRCA transitions. The simulator in the previous

section will load and apply them to the initial and succeeding configurations. Specifically,

www.manaraa.com

57

the class InputReader deals with processing the rule files and Configuration2D applies

them to the start and succeeding states (both classes in Appendix A).

Any line in the rule set file will be interpreted as a comment when it starts with a %.

There are two sections of the file before rules can be listed. First, the initial state of the

MRCA is given in semi-colon delimited format with each line being a row of the MRCA and

the configuration terminated by the word END. In our case,

s;

END

means that the MRCA starts with a single cell with state s. Only configurations with 2n

rows and columns (i.e., a uniform cell fission count and size) can be specified in the simulator

given in Appendix A. The next section is used by the software to specify the color of cells

in certain states (again terminated by an END). In our case,

(255,0,0)={RED}

(0,255,0)={GREEN}

END

means that cells in state RED and GREEN appear colored with RGB values (255, 0, 0) and

(0, 255, 0), respectively.

We now show the context-dependent grammar for producing rules. Non-terminal symbols

are presented in angle brackets <> and terminals presented without. We use / to separate

options for productions, parentheses to group items, and a Kleene + to indicate that one or

more of a set of productions with + next to it must be used as part of the current production.

None of these items appear in the actual language.

www.manaraa.com

58

<start> → <rule> / <orderedrule>

<rule> → <initialsyms>;<syms>;<syms>;<syms>;<syms>;<finalsyms>

<syms> → {(<symbol>;)+}/ <symbol> / ∗ /| <syms>,<syms> |

<initialsyms> → <symbol>

<finalsyms> → <symbol> /| <syms>;<syms>;<syms>;<syms> |

<symbol> → <literal> / <alias>

<orderedrule> → <oinitial>;<osyms>;<osyms>;<osyms>;<osyms>;<ofinal>

<osyms> → [(<symbol>;)+]/{(<symbol>;)+}/ <symbol> / ∗ /| <syms>,<syms> |

<oinitial> → [(<symbol>;)+]

<ofinal> → [(<symbol>;)+]

where productions for <literal> and <alias> depend on the rule set (the following section

defines an example set of rules) and productions for<oinitial> and<ofinal> are dependant

in that the same number of symbols must appear in each set for a given rule.

We now discuss the semantics of a rule set. A rule or ordered rule is read as a semicolon-

delimited list of: initial state (set), north neighbor state (set), east neighbor state (set), west

neighbor state (set), south neighbor state (set), and result state (set). A rule applies to a cell

when the initial state and the cell’s neighborhood state are members (in order) of the rule’s

first five entry sets. The cell’s state then becomes the result state. As a simple example,

the rule x;a;b;c;d;y specifies that a cell in state x with north neighbor a, east neighbor b,

south neighbor c, and west neighbor d will transition to state y. A more complex example

involving sets is that of 0;{ a,b};c;d;{ e,f};0 where a cell in state 0 north neighbor

either a or b, east neighbor c, south neighbor d, and west neighbor e or f would transition

to state 0.

To specify the b = 0 and b = 1 neighbor states separately, we write | <syms>,<syms> |

www.manaraa.com

59

where the first symbol matches the neighbor state at b = 0 and the second matches the

neighbor state at b = 1 in the appropriate direction according to the definition provided in

Section 3.2. For example, the rule x;*;|a,b|;*;d;y applies when the state is x, the east

neighbor reads an a as the state of the lower neighbor (b = 0) and b as the state of the upper

neighbor (b = 1), and d is the state of both neighbor indices to the west. When * appears

as a neighbor state, it matches any neighborhood set. The rule will match any state in that

direction. Note that it cannot appear as the initial state or result state.

<finalsyms>’s final production specifies how fissions are specified. The four symbols

appearing inside vertical bars | are the initial states of the new cells produced by the fission.

For example, f;*;*;*;*;|a;b;c;d| says that a cell in state f will always fission into four

cells where the upper-left cell has state a, upper-right cell has state b, lower-left cell has

state c, and lower-right cell has state d.

There are several shorthands we use in rules. {<symbol>;+ } denotes a set of symbols

with at least one member. When used as a neighbor state, any combination of those symbols

can appear as the neighbor states. [<symbol>;+] denotes an ordered sequence of symbols

with at least one member and can only appear in rules where at least the initial and result

symbol are ordered sequences with the same cardinality. Neighbors can be ordered in rules

of this form but must specify a sequence with the same cardinality as the initial and result

sequence. For example, ordered rule [x;y];x;*;[a;b];*;[y;x] is exactly equivalent to the

rules x;x;*;a;*;y and y;x;*;b;*;x. Note that the expected state to the north, x, appears

in both rules but a to the south only appears in the rule starting in state x (not y). The

main reason this is used is in conjunction with the interpretation of <nonterminal> to be

discussed shortly to state large sets of rules in a concise way.

The set of <alias > symbols depicted as atomic above are actually aliases for sets of

elements selected from the symbols produced by < literal >. A new <alias > is created

using the following format:

www.manaraa.com

60

<alias>= {(<symbol>;)+}.

Before any transitions are done by the MRCA, each instance of <alias> is replaced with the

specified list of symbols. All instances of <alias> must be defined before they are used. For

example, allDashes={-;0l-;1l-;2l-} means that all instances of allDashes are replaced

by the four dash types given here.

4.2 Computing Sets with the MRCA Simulator

One use of the simulator described in Section 4.1 is to implement the construction de-

scribed in the proof of Lemma 3.3.1 in Section 3.3. First we will examine the requirements

on the one-dimensional CA that is transformed into a computational unit and then examine

how additional changes to integrate with an MRCA can be accomplished.

4.2.1 Requirements on the Input CA

Recall computable cellular k-coloring ψ : Q 99K [k] for X ⊆ [0, 1]2 and that there exists

a Turing machine (TM) M that identifies the correct color of that square with respect to ψ

(if it exists) given an encoding of a dyadic-width square Q ∈ Q. The translation of such a

TM to a CA is direct and simple — the state of the TM and location of the head can be

encoded into the states of the CA and the transitions can be written to only change the cell

at the head. Since TM transitions consult only cell state and machine state, this is sufficient

to create an equivalent CA.

Given this transformation, what should this input Turing machine M do precisely? We

will examine several concerns and give an example way to address these concerns.

(A) Given a reserved state GREEN (RED) to denote ψ(Q) = 1 (ψ(Q) = 0, M must change

the entire tape to this state if it concludes that ψ(Q) is 1 (0), respectively.

(B) The address information must be preserved or locally recoverable for the length of the

www.manaraa.com

61

computation. This information must be found in a simply-specified location — we use

the start of the machine up to a special symbol C.

(C) Add an extra cell to the left end of the CA. This reserves space to assist in coloring

and provides a buffer between units of computation. Call this the “rabbit hole” [8].

(A) is easily accomplished by removing the final state(s) of the Turing machine computing

ψ and replacing them with states and rules such that two “coloring” states cGREEN and cRED

change all cells to the left edge of the tape with the computed color then start changing all

tape cells to the right that color. This process is an infinite process as the tape is right-

infinite. When translated to a computational unit in an MRCA, this infinite process is

truncated at the right end of the computational unit. When a cell becomes cGREEN or cRED,

it will always change to GREEN and RED as its next step. The intermediate states cGREEN and

cRED exist to allow correct interaction with the rest of the MRCA as described later.

Many Turing machines for computing a problem do not preserve their input or any way

to recover that input. However, if such a TM is provided, we can easily alter that Turing

machine by inserting a pre-process that copies the address to the right of the computational

area and reserves that address information for the length of the computation in order to

address (B). Alternatively, some computations (such as those used in our example in Sec-

tion 4.3) only change the input a small amount so we can add a post-process to correct the

address before it is used elsewhere.

(C) an easy alteration — just add such a cell to the left. We use a cell in state h.

4.2.2 Changes to Generate A Computational Unit

The following are the changes to translate the input CA into the set of rules we call a

computational unit CM in our proof of Lemma 3.3.1 . The proof shows that these changes

are sufficient so we will now concern ourselves with implementing these changes on an input

CA.

www.manaraa.com

62

(1) Lay out the cells such that each cell is twice the length and width of the cell to its left

and half the length and width of the cell to its right.

(2) Slow computation by a factor of three. This is to allow time for periodic fission of new

cells to the right of the computation. This is implemented for cells unaffected by this

fission as follows: if the original computation had the rule δ(a, b) = c for some a, c ∈ S

and c ∈ NS, add new rules ∀d ∈ NS δ(a, b) = c′, δ(c′, d) = c′′, and δ(c′′, d) = c.

(3) Add rules to allow for both periodic and computation-prompted fission.

(4) Add rules to pass a copy of the address information off the right end of computation.

(1) is fairly simple. When the CA is translated to a ruleset for CM , each transition

ignores the cells to its north and south. However, each transition reading a state to its west

now requires that state to exist only in index b = 0 to the west (i.e., the lower cell) because

its west neighbor will be half its size. We then follow the description given in (1) to laying

out the initial cells.

(2) can be implemented as given above and then altered as needed for steps (3) and (4).

Periodic fission as required by (3) can be accomplished by reserving a space on the right

end of CM that represents counting down a set amount and then sending a signal to fission

to the left. For example, it could start in a state named f100 and subtract one from the

index of f before fissioning at f0. The cell to the west of the fissioning cell would be able to

recognize this fission and fission itself — this process repeats down the computational unit.

Likewise, when computation requires more space, the cell with the countdown state fi would

be overwritten by the incoming information and fission, creating a new cell with state f100

in the appropriate eastern cell.

As a practical matter, it is easier to pause computation until the information in CM can

be pushed all the way to the west, up against the rabbit hole. In our example in Section 4.3,

we created the suffix w (for “wait”) that indicated that the cell was not to be used in current

www.manaraa.com

63

computation but instead be passed to the west. When a “wait”ing state reads a non-waiting

or rabbit hole cell to its west, it begins reading its neighbors according to the instructions

in the CM set of rules and performing computation again.

The pauses implemented for (2) are used here to give CM time to recognize that a fission

is going on and reduce the number of possible states that may fission as they read a fission

to their east. However, the pauses are only crucial in implementing (5).

The simplest way to accomplish (5) is to simply effect the address passing before any

computation is done. This will ensure that, regardless of whether CM halts, the address

information will be passed to the east and then north (relative to the rotation of CM) for

seeding of a child set of computations as described in the next section. Alternatively, one

can take advantage of the pauses instituted by (3) to pass along address information after

some point in the computation.

4.2.3 Additional Rules to Complete the Construction

After creating the rules for CM , the MRCA constructed, A, as given in the proof of

Lemma 3.3.1 requires some additional rules to color the space computed by a CM and

initialize new sets of CM for ever-smaller dyadic squares. These rules can be reused for

different computational units as long as cell state names in CM are understood. For example,

if each CM changes to cells in state GREEN or RED, A will respond in the same way regardless

of what CM was computing.

First, note that the rule set given in CM must be rotated 3 times to generate the “pin-

wheels” depicted in Figure 3.6. A’s first set of rules serve to create the initial pinwheel with

CM(Q(0, 0, 0)) in all four directions. As a practical note, CM(Q(0, 0, 0)) will never actually

change to a particular color (this would correspond to the entire unit square being a single

color) so it seems wiser to start off with four pinwheels, one each for CM(Q(1, 0.0, 0.0)),CM(Q(1, 0.1, 0.0)),

CM(Q(1, 0.0, 0.1)), and CM(Q(1, 0.1, 0.1)). This also simplifies address specification as all

www.manaraa.com

64

addresses can be written as binary fractions without a whole number part.

This process of initialization also creates a large amount of unused space. Many of A’s

transitions besides those of CM and its three rotations will be dedicated to telling these

blank spaces to remain blank. Also to manage is the fact that, as CM fissions for more

computational space horizontally, more blank space will be created vertically.

As each CM computes, there are two points where the rules for A must interact with a

CM . First, if the entire CM changes to a color GREEN or RED, A must have a set of rules

to accomplish secondary coloring described in detail in Section 3.3. The simplest way to

accomplish this is to have CM use intermediate states cGREEN and cRED to indicate that

cells in CM should change to cGREEN and cRED as far to the east and west as possible, up

to and including the rabbit hole or the last cookie state to the west (respectively). This is

the primary coloring process that, due to the way that computational units are laid out by

A, will color only CM . Secondary coloring occurs when two neighbors, one vertical and one

horizontal, are both GREEN or RED. The cell can then change to this color using the rules

specified by A.

If we did not institute intermediate states cGREEN and cRED for coloring the space used

by CM(Q(n, i, j)) and attendant cookie states, the neighboring CM(Q(n, i+ 1, j)) will react

as if it were in the primary coloring stage as we would be unable to differentiate between

cells colored by the primary and secondary methods. By having this intermediate state,

neighboring CM cells ignore the presence of GREEN and RED, reacting only to cGREEN and

cRED. Note that there is no circumstance where cells in a CM will be colored by the secondary

coloring process.

The other central task of A is propogating CM(Q) to a new pinwheel computing CM(Q′)

where Q′ has one higher level of precision and the x and x address information is appropri-

ately updated to reflect the new dyadic square being computed. This is also the only case

where the rotation of the CM matters as each value of i and j in dyadic square Q(n, i, j) will

www.manaraa.com

65

be incremented (or not) based on the rotation of CM (as shown in Figure 3.8).

This is the most complicated part of A as the pinwheel must be centered on the center

of the dyadic cell each CM is computing. Initially marking where the center of the reserved

space for each CM was helped seeding the child pinwheel as it also marked the horizontal

center of the child dyadic cell above each CM (before rotation). The vertical center of the

dyadic cell above each CM could be deduced in each case based on the fission pattern of the

empty cells above CM and the rotated CM to the west that is computing south-to-north.

Once the center is determined, the address information must be taken from the parent

CM , passed to the right, upwards, and then duplicated to the east, west, and north (before

rotation). We found that it was easiest to add an extra bit to the x and y addresses (0 or 1

depending on rotation) at this point. Once the address information is sent, transitions start

the use of the rules for the computational unit CM .

4.2.4 Simplifications for Halting Input CAs

If we know that the input CA will halt∗, a few simplifications can be used that provide

advantages in showing how the MRCA construction works. For this reason, we chose to use

these simplifications in our example (Section 4.3) but they can be applied to any halting

CA.

(1) All cells in CM can be of the same size.

(2) Passing of address information to create child pinwheels can be done after CM is com-

plete.

(3) There is no need for a pause between steps of CM .

The justification for this simplifications is that, when a CM is known to halt, we do

not need to seed a new pinwheel of computation while that CM is still computing. In the

∗Note that, under most definitions, a CA never halts but simply keeps applying the transition rules. In
our case, we consider a CA halted if the tape consists solely of GREEN, RED, or blank cells.

www.manaraa.com

66

general case, this is a necessary step because the child computations must eventually be

seeded in order to guarantee coloring of all dyadic squares when the parent does not halt. If

CM(Q(n, i, j)) were to run forever, all dyadic squares with i ∗ 2−n and j ∗ 2−n as prefixes of

their x and y coordinates would never be computed unless the address information was sent

on.

This possibility of child computations and parent computations occurring at the same

time is what necessitates having each cell of computation in CM be a different size. As the

computation progresses, the computational unit is compressed to the west to get out of the

way of child computations (and grandchild computations and etc.).

However, if CM(Q) is known to halt, we do not need to worry about child computations

not being initialized. We can keep all cells in the computation the same size and wait to

create the child computations until after CM(Q) halts. This also means that we do not need

to pause between computational unit steps because there is no task we need to accomplish

while CM(Q) is running.

This derives some secondary benefits. First, when using the simulator shown in Sec-

tion 4.1, we, as humans developing the rule sets, can see the states of all cells in a computa-

tional unit at one time. This is a problem in the general case because a computational unit

of length n with a rabbit hole (i.e., smallest cell) of height s has a last, east-most cell of size

s ∗ 2n. For most n, this is a problem as we can’t zoom to view cells near the rabbit hole

while also comfortably reading the cells to the east. Thus, while the MRCA has no issues

with cells doubling in size to the east, human rule development is difficult.

Also, because the address passing and computational unit steps can be separated (as op-

posed to occurring in parallel some times), it is easier to debug rules created for computation

and rules created for creation of child computational units. Although some of the advan-

tages of the parallel nature of the MRCA is lost, the gain in development and presentation

simplicity is substantial.

www.manaraa.com

67

Figure 4.2 Example states of a one-dimensional CA for {(x, y) ∈ [0, 1]2 | y < x2}
generating the value of x2.

4.3 An Example of MRCA Computation

We will now discuss the specific example of computing L = {(x, y) ∈ [0, 1]2 | y < x2}.

This language is computable by a CA that always halts so we will use the simplifications

discussed in Section 4.2.4. A complete rule file can be found in Appendix B including the

symbols for the <alias> and < literal > productions (differentiated by the fact that the

former must be defined before use as discussed in the last section).

4.3.1 Input One-dimensional CA

The CA for L = {(x, y) ∈ [0, 1]2 | y < x2} proceeds through the following steps for

any input Q(n, i, j). We first discuss how we generate the value of X2 in an accumulator

(depicted in Figure 4.2). All figures in this section are screenshots of the graphical interface

for the simulator presented in Section 4.1.

www.manaraa.com

68

(a) The CA is initialized to h-XxYC0A0 where X and Y are the bits representing X = i ∗ 2n

and Y = j ∗ 2n. The bits between the C and A will represent the “counter” and the

rest represents an “accumulator” in which we will calculate X2. h is the rabbit hole

state while the blank - to the east of it is to store tentative coloring information as

discussed later in this section. Figure 4.2(a) shows the initial state for Q(1, 1, 1).

(b) The first task is to set the counter for calculating X2 by copying the bit(s) of X into

the counter section. Figure 4.2(b) shows the process of copying over the value of X,

1, in descending order where state CU represents that the counter has not been set,

1’ represents that this bit has been copied to the right, and 1cp1 represents that the

value of the cell is 1 (in this case, the value of Y) and the value being passed to the

east is 1.

(c) When the counter value is set (detected by passing over CU), we decrement the least bit

of the counter and go to retrieve a copy of X. If this counter results in turning the

entire counter to 1s, we go to step (f) to continue computation instead. However, in

most cases, a “go” signal is sent west to retrieve another copy of the value of X as

shown in Figure 4.2(c).

(d) The same procedure used to copy over the counter value in part (b) is used here to copy

the value of X over to the accumulator section. The bits are again sent in descending

significance order. Figure 4.2(d) depicts the CA’s state after the value of 1 has been

set as the initial accumulator value (the Ash value is explained in the next section).

(e) So far, we have accomplished the multiplication 1∗ i for Q(n, i, j) and stored that result.

However, we want to end up with the value (i ∗ i) ∗ 2−n so we have to “pad” the

result of the multiplication with n bits to represent the fact that the X being squared

is actually a binary fraction, not a binary whole number. This is accomplished by

sending a “shift” sh-suffix signal to the left of the counter and copying one pad bit per

www.manaraa.com

69

bit of the counter. As the counter has the same length as X and X will always have

n bits by construction, this correctly pads our accumulator. Figure 4.2(e) shows the

state of the CA after this padding is complete.

(f) After this, the counter is decremented and, if not all 1s, another copy of X is copied to

the right and added to what is in the accumulator (from most significant bit to least).

Figure 4.2(f) depicts the situation after this where the suffix of d indicates that we are

sending a signal that we are done with multiplication and ready to compare Y and X2.

The next series of transitions concern comparing the value of Y to X2 (as now appearing

in the accumulator). Select stages of different computations are depicted in Figure 4.3.

(a) Figure 4.3(a) shows the state of the CA after the d suffix has been passed west until

encountering the x symbol in CM(Q(1, 1, 1)). This means that the current d-suffixed

cell is the most significant bit of Y and should be compared to the most significant bit

of X2. So we mark this cell y1.

(b) The value of 1 is passed to the right until encountering the end of the counter marker,

A, which becomes C1 as depicted in Figure 4.3(b).

(c) A comparison is now made. If the first bit of X2 is less than the first bit of Y , we

generate the state 0> as shown in Figure 4.3(c). If we had instead been copying over

a value of 0 and the first bit of X2 was 1, we would generate the state 1<. Lastly, if

the bit of Y and the bit of X2 match, a state y0eq or y1eq is generated and a request

is sent west to retrieve the next bit of Y . These first three stages would then repeat

until a 0> or 1< result occurs or Y = X2 is detected. We will explore examples where

each of these results occur.

(d) To continue with the example of 0> for a moment, Y > X2 means that the point

(i ∗ 2−n, j ∗ 2−n) ∈ L. Although we are interested in the entire dyadic square Q(n, i, j),

www.manaraa.com

70

Figure 4.3 Example states of a one-dimensional CA for L = {(x, y) ∈ [0, 1]2 | y < x2}
while performing comparisons. (a)-(c) are of CM(Q(1, 1, 1)), (d)-(e) are of
CM(Q(1, 0, 1)), (f)-(h) are of CM(Q(1, 1, 0)), and (j) is of CM(Q(1, 0, 0)).

www.manaraa.com

71

this is useful information. So we tentatively guess that this dyadic square should

be green — in the very least, it should not be red! In the process of marking the

square to the right of the rabbit hole h with a state g to indicate tentative green-ness,

X will have it’s lowest bit increased because we now are going to check if the point

((i+1)∗2−n, j ∗2−n) ∈ L is also green. If it is, it is simple to see that the entire dyadic

square Q(n, i, j) ⊆ L. We switch examples now to see this situation in Figure 4.3(d)

which shows the processing of Q(1, 0, 1) after the “guess” of green g has been recorded

and the CA is starting to generate X2 as per the multiplication rules, part (a)†.

(e) If multiplication and comparison results in the finding that Y > X2 for this updated

value of X, we now begin the coloring process for this CA. Figure 4.3(e) shows how

our tentative guess state g becomes state cGREEN and starts the coloring process of

this CA. Note that X is fixed to send the correct address of the lower-left corner of

the dyadic square in case the result had not been a coloring.

(f) Figure 4.3(f) shows the example computation of Q(1, 1, 0) where we have compared the

first (and only) bit of Y , 0, to the first bit of the accumulator and found them equal.

This creates the “next” series of suffix states that are sent west to retrieve the next bit

of Y .

(g) When the next bit of Y does not exist, this does not neccessarily mean that X2 > Y as

the remaining bits of the accumulator may be 0. Figure 4.3(g) shows that this is not

the case — the CA passes a signal to the right to verify that all the remaining bits of

X2 is 0. As this is not the case, we create the signal 1<.

(h) When the signal 1< reaches the rabbit hole state, we record an r state to indicate both

that (i ∗ 2−n, j ∗ 2−n) 6∈ L and we tentatively believe that Q(n, i, j) is red. We now

†We switch from CM (Q(1, 1, 1)) because it enters a special case where increasing X’s least significant bit
results in X = 1. This always means that Y < X2 so we save some computational steps by immediately
reacting as if < were sent west.

www.manaraa.com

72

verify that (i ∗ 2−n, (j + 1) ∗ 2−n) 6∈ L — if this is also the case, we can safely conclude

that Q(n, i, j) 6⊆ L. Figure 4.3(h) depicts the situation where the computation of this

second point is just starting.

(i) Figure 4.3(i) depicts an instance of the final group of situations where Y = X2 (in this

case, for Q(1, 0, 0). In this situation, we can never color Q red or green so computation

concludes.

Through a combination of the processes for multiplying to generate X2 and the process

to compare that value to Y , we compute whether two points in each dyadic square is in L

and consequently decide if the computational space should be colored and, if so, whether it

should be colored green or red. We discuss how fission for computational space is handled

in Section 4.3.3 as the simplest reason to fission for space occurs during child computational

unit pinwheel creations. When input into our construction, all that remains to rotate the

rules to create pinwheels, write rules to color the entire dyadic square, write rules to pass

along updated addresses, and write rules to create child pinwheels with those new addresses.

4.3.2 Rotation and Coloring

Now we can discuss how the MRCA A is initialized using the CA discussed in the previous

section.

First, all rules written for the CA must be translated to MRCA rules. Fortunately, due

to our simplifying assumptions we just need to add ∗s as the north and south neighborhood

state positions for all one-dimensional rules. Second, we have to create an alternate rule set

for each of the 3 other wheels of the computational unit pinwheel. In our case, we use the

prefix 1l, 0l, and 2l for the north-to-south, east-to-west, and south-to-north computational

units as depicted in Figure 4.4. The rotations of the rule sets are simple — for example,

to generate the north-to-south rules, we simply move all neighborhoods one step clockwise

(e.g., east neighbor specifications become north neighbor specifications) and add a prefix. For

www.manaraa.com

73

Figure 4.4 Initial states of an MRCA for {(x, y) ∈ [0, 1]2 | y < x2} depicting only the
pinwheel for dyadic square Q(1, 0, 0).

www.manaraa.com

74

Figure 4.5 Configurations of an MRCA for L = {(x, y) ∈ [0, 1]2 | y < x2} depicting a
coloring process for dyadic square Q(1, 0, 1).

example, the rule x; a; b; c; d; y becomes the rule 1lx; 1lb; 1lc; 1ld; 1la; 1ly for south-to-north

computation. Note that even the blank spaces in Figure 4.4 have the respective prefixes.

After the computation of each computational unit is complete, the computational unit

may be a color. Because the same input is given to each unit in a pinwheel, we will have

each unit changing to the same color. This is shown (with directions 2l and 0l frozen) in

Figure 4.5(a). Then secondary coloring, in this case if a cell’s south and west neighbors

are green, occurs (Figure 4.5(b)). Figure 4.5(c) shows the completed coloring — note that,

due to how the primary coloring process of computational units is accomplished, the color

www.manaraa.com

75

Figure 4.6 Example of fission due to computational concerns when computing
Q(3, 111binary, 111binary). A single computational unit is shown.

will not “bleed” into neighboring dyadic square computation. Also note that west-to-east

computation is part of the fourth quadrant but, as the entire square will eventually be

colored, exactly when each computational unit changes to that color is of little consequence.

4.3.3 Fission and Creation of Child Pinwheels of Computational Units

The final areas to discuss include when fission is required and how to create child pin-

wheels of computational units. When these issues are addressed, our example MRCA con-

structed for computation of L will be complete!

Before continuing, note that, although it did not occur in the pictured computations for

L, it is possible that computation will require more space than that allotted to the unit

initially. In the CA, we assumed that there was an infinite number of cells (marked c for

cookie states) to the right. In the MRCA, we do not have this luxury so we must alter the

rules to allow fission.

Figure 4.6 shows a situation where, during the processing of Q(3, 111binary, 111binary), we

www.manaraa.com

76

must fission for more space. Specifically, in part (a) we are passing the value X of 111

to the right and part (b) depicts the transition where we have attempted to pass a 1 to

the right but the cell to the right either does not exist (as shown here) or is of the wrong

computational unit prefix. Part (c) shows an intermediate stage where the computation of

the CA has continued while the right hand side of the CA has frozen to fission (using the

suffix w for “wait”). Fortunately, because fission for more computational space can only occur

during this process of accumulating X2, we can write rules to handle all possible situations

of collision between the left hand side continuing computation while the right is fissioning.

Figure 4.6(d) shows the last step of the fission. As the fission continued to the left, non-

cookie wait symbols are also passed to the left and the leftmost bit in the computational

unit has changed to the St suffix to indicate that computation should “start” again as this

suffix is passed east. Figure 4.6(e) shows a configuration after fission is complete showing

computation continuing.

The other situation where fission is required is as part of the creation of child pin-

wheels of computational units. Selected configurations for creating the child pinwheel

of Q(1, 0, 0) above the east-to-west computational unit (i.e., the computational units for

Q(2, 01binary, 01binary)) are depicted in Figure 4.7.

(a) Figure 4.7(a) depicts the first step, where the space allocated to the parent computa-

tional unit has been partially cleared out with cells in state r, a cell at the horizontal

center of the child pinwheel is in state addr, and the space reserved next to the rabbit

hole has changed to state fis to start operations to create a new set of computational

units.

(b) From this point, two series of transitions occur in parallel. First, the fis state is passed

up and over until we read the addr state below or the edge of the dyadic square

is detected. The first state to do this changes to a state mark and the cell to its left

becomes states ar and a to indicate where address information will be sent up. Second,

www.manaraa.com

77

www.manaraa.com

78

Figure 4.7 Example of fission due to computational concerns when computingQ(1, 0, 0).
Note that computation continues in the 1l rotation of this unit.

www.manaraa.com

79

address information is sent to the east. Figure 4.7(b) shows the configuration after the

first series of transitions is complete.

(c) Figure 4.7(c) shows how the address information is passed to the north with states

suffixed by up. Blank cells to the north fission in order to accept this information.

Note that a 1 has been added to the least significant end of the value of X (this is also

done with the value of Y before the next subfigure).

(d) The center of the new pinwheel is found through the pattern of fissions that the empty

cells must go through and that sometimes results in extra empty cells changing to state

h (along with the correct space). Figure 4.7(d) depicts a configuration after we have

sent address information up to the center of the child pinwheel marked by h. Our next

step is to copy the last bit of the vertical computational unit up and through the rabbit

holes for each of the other three wheels. This is done using the u series of states such

as 1u1′ appearing in this figure which represents remembering the address 1 on the left

of the symbol but passing the 1’ on the right of the symbol.

(e) When the first bit gets to the rabbit hole for the 2l (i.e., north-to-south) computational

unit, that bit is passed through the rabbit hole as shown in Figure 4.7(e). Note that,

as bits are passed to the north through the center of the pinwheel, they change to

computational unit states like 2l0, 2l1, 2lC, etc. and, as computation starts at the end

(south in this rotation), all the states will have been sent and computation can proceed.

Note that there is a slight delay to sending the address information such that the

north computational unit will be a few steps behind the east and west computational

unit which will be behind the south computational unit. Also, the basic address and

computational information will not fit in the southern computational unit so a fission is

occurring to the south. This procedure for fission occurs in the same way as described

earlier in this section when fission was done for computational reasons.

www.manaraa.com

80

(f) Figure 4.7(f) shows the completed child pinwheel. Note that fission in the southern

computational unit is passed automatically through the rabbit holes. This is because

we know that all the other computational units will need to fission just to fit the initial

configuration of CM(Q(2, 1, 1)) so this signal saves computation time and detection

rules.

Thus our example MRCA accomplishes the tasks given in the proof of Lemma 3.3.1 and

so MRCA computes L = {(x, y) ∈ [0, 1]2 | y < x2} because of the input CA computing this

set.

4.4 In-Place MRCA Computation

We now step back from the details of the construction in Lemma 3.3.1 to look at a simpler

class of problems for MRCA computation, in-place MRCA computable sets.

Definition 4.4.1. A set X ∈ [0, 1]2 is MRCA in-place computable if there exists a MRCA

that MRCA computes X with the restrictions that: each cell fissions at every time step and,

for all rules in the MRCA, the state of the current cell is determined solely by the state of

the parent cell.

An MRCA in-place computable set is one where the state of each dyadic square deter-

mines the state of a set of child dyadic squares at an additional level of precision. For exam-

ple, the state of Q(1, 1, 0) uniquely determines the state of Q(2, 10binary, 0), Q(2, 10binary, 1),

Q(2, 11binary, 0), and Q(2, 11binary, 1) in in-place MRCA computation.

A class of in-place computable sets we examine is that of rational polygons.

Definition 4.4.2. A rational polygon is a planar figure that is bounded by a closed path

composed of a finite sequence of half-planes delimited by lines with rational slope.

The problem of creating a set of rules to delineate any rational polygon can be decomposed

into creating sets of rules to delineate the border between the polygon and the plane. For

www.manaraa.com

81

Figure 4.8 Example rational polygon with three identified line boundaries. In the limit
of MRCA levels, the accept area is designated in green while the reject area
is red.

example, in Figure 4.8, green denotes space inside the polygon, red denotes space outside

the polygon, and the black frames decompose the polygon into sub-sections that are either

entirely one color or contain at most one line segment. It is always possible to deconstruct

a polygon in this fashion.

Thus, if we can build a set of MRCA rules to color portions of the plane red and green

for each of these sub-sections, we can merge these rules (much as we did when rotating

computational units in the proof of Theorem 3.3.2), using unique marks for each rule set

and altering rules to treat cells marked differently as “edge cells” (i.e. state ⊥). We will

now examine the situations that may occur when creating an MRCA for computing regions

delimited by a subset of all lines y = mx+ b where m, b ∈ Q.

To create MRCA rules for these lines, we will use the term rescaled dyadic square, meaning

a dyadic square whose points are addressed as if they were the unit square. We will discuss

how a line crosses each square in a configuration as if they were occupying the entire unit

square by rescaling the line’s x and y intercepts.

To facilitate our discussion, we will refer to the leftmost point of the line inside the

www.manaraa.com

82

rescaled dyadic square of interest as the entry point while the rightmost point will be the

exit point. The squares that have been colored can either be viewed as not fissioning any

further or fissioning along with the other cells. In either case, they retain their accept or

reject color and represent no more than the simple color-retention computation. Each of

the other squares will be addressed by a different subcase (specified by their entry and exit

points). We now state our main result for in-place MRCAs:

Theorem 4.4.3. There exists a finite set of MRCA rules to compute any line ` = {(x, y) |

y = mx+ b,m, b ∈ Q}.

The proof of this theorem primarily consists of the observation that any line with rational

slope will cross each rescaled dyadic square a finite number of ways. We discover that, for

m =
mn

md

and b =
bn
bd

, the line must enter each rescaled dyadic square at y-axis points{
(0, b± i

2bdmdmn

) | i ∈ N
}

. Given that the slope is constant, there is a finite number of

ways that ` can cross each square when entering at one of these points.

If we carefully examine the fission of each dyadic square, we can identify analytically

the equation of the line in each resulting dyadic square. Because the number of ways `

will cross the square is finite, we can write a finite set of rules to identify which case each

rescaled dyadic square represents and the four cell resulting from fission: A red square, a

green square, or a square that recursively requires the same set of decisions.

The Java code for a graphical user interface to create a set of rules for any part of [0, 1]2

delimited by a rational line is given in Appendix C.

Proof of Theorem 4.4.3. If the line does not enter a given unit square, that square and all

dyadic subsquares have no entry or exit point and will be colored by the last ancestor cell

containing these points. Therefore we will focus on the dyadic squares that the line crosses.

First, note that all lines of defined, non-zero rational slope cross the y-axis at some value

b and cross the x-axis at some value xint. Thus, the slope m is
b

xint
and (0, b), (xint, 0) ∈ `.

www.manaraa.com

83

As m and b are rational, we will identify numerator and denominator pairs mn,md, dd ∈ Z+

and bn ∈ Z such that m =
mn

md

and b =
bn
bd

.

Second, note that any time the line crosses a dyadic square, the only thing that differs

from when we examine any other dyadic square is the y-intercept b and x-intercept xint.

When we model a higher resolution (i.e. smaller dyadic squares) including the line, the slope

is invariant. Therefore, we will focus on the points at which the line enters and exits a

rescaled dyadic square and subsequent (fission) subsquares. Specifically, let us examine the

unit square adjacent to the y-axis that contains `. Any other square that ` hits is similar

but we have to consider a different b and xint.

We now examine nine possible configurations of entry and exit points for such a line to

see that they result in lines separated by a minimum of
1

2bdmdmn

. We then show these nine

configurations are symmetric to all possible configurations. Since there exist rules for each

of these nine cases, each case deterministically leads to another, and there is a finite number

of ways the line can cross any dyadic square, there is a finite set of rules that specifies the

behavior of a MRCA to compute regions delimited by a rational line and our proof will be

complete.

The nine cases are specified relative to b, xint, and three other quantities: xhalf , xone,

and yhalf such that (1
2
, xhalf), (1, xone), (yhalf ,

1
2
) ∈ `. We will label the four quadrants of the

fissioned version of this rescaled dyadic square as given in Figure 4.9 with A,B,C, and D.

Each case identifies a class of entry and exit points for each quadrant.

For example, if we consider rescaled dyadic square A, each point falling inside A but

labeled relative to the original unit square would have to be shifted up 1
2

then have both x

and y coordinates doubled to be points relative to A as A is half the length and width of

the original square.

There is a finite number of subcases. In each possible case, the entry and exit points

are the product of
1

2bdmdmn

and an integer expression. This suffices because there are at

www.manaraa.com

84

(9)

DC

BA

DC

BA

A B

C D

A B

C D

A B

C D

DC

BA

(5) (6)

A B

C DDC

BAA B

C D

(1) (2) (3)

(4)

(7) (8)

Figure 4.9 Graphical representation of the nine primary ways a rational line can enter
and exit a unit square. There are additional but symmetric ways for this to
occur.

most 2m ways that a line of slope m can cross a unit square while remaining separated by

1

2bdmdmn

.

Note that

www.manaraa.com

85

b = yint =
bn
bd

=
2bnmdmn

2bdmdmn

,

xint =
−bn
bd
∗ md

mn

=
−2bnm

2
d

2bdmdmn

,

yhalf =

(
1

2
− bn
bd

)
∗ md

mn

=
m2
d(bd − 2bn)

2bdmdmn

,

yone =

(
1− bn

bd

)
∗ md

mn

=
2m2

d(bd − bn)

2bdmdmn

, and

xhalf =
1

2
∗ mn

md

=
bdm

2
n + 2bnmdmn

2bdmdmn

so all of the above notations are integer multiples of
1

2bdmdmn

. We will now examine in detail

the nine cases given in Figure 4.9, showing that both entry and exit points are multiples of

1

2bdmdmn

.

(1) C to C. In this case, both the y-intercept b and the xint are less than 1
2
. So we color all

quadrants except C identically (i.e. all are either green or red) and examine the line

from (0, 2b) to (2xint, 0) in C. Note that 2b and 2xint can be written with a denominator

of 2bdmdmn and integer numerator by earlier calculation of b and xint.

(2) C to D with no intermediate quadrant, enter from y-axis, exit by crossing x-axis. We

color quadrants A and B identically then examine two subcases: In quadrant C, the line

from (0, 2b) to (1, 2xhalf) and, in quadrant D, the line from (0, 2xhalf) to (2xint− 1, 0).

www.manaraa.com

86

Note that 2xhalf can be written with integer numerator and denominator 2bdmdmn

and 2xint − 1 can as well.

(3) C to D with no intermediate quadrant, enter from y-axis, exit by crossing x = 1. So we

color quadrants A and B identically then examine two subcases: In quadrant C, the

line from (0, 2b) to (1, 2xhalf) and, in quadrant D, the line from (0, 2xhalf) to (1, 2xone).

Note that 2xhalf can be written with integer numerator and denominator 2bdmdmn

and 2xone can as well.

(4) C and D with no intermediate quadrant, enter from x-axis, exit by crossing the line

x = 1. We color quadrants A and B identically then examine two subcases: In quadrant

C, the line from (2xint, 0) to (1, 2xhalf) and, in quadrant D, the line from (0, 2xhalf) to

(1, 2xone). 2xhalf and 2xone can be written as integers over 2bdmdmn.

(5) A to D with no intermediate quadrant, enter from y-axis, exit by crossing the line x = 1.

We color quadrants B and C oppositely (i.e. if B is accepted, C is rejected or vice versa

depending on the polygon) then examine two subcases: In quadrant A, the line from

(0, 2b − 1) to (1, 0) and, in quadrant D, the line from (0, 1) to (1, 2xone). 2xone and

2b− 1 can be written as integers over 2bdmdmn.

(6) A to D with no intermediate quadrant, enter by crossing the line y = 1, exit by crossing

the x-axis. So we color quadrants B and C oppositely then examine two subcases: In

quadrant A, the line from (2yone, 1) to (1, 0) and, in quadrant D, the line from (1, 0)

to (2xint − 1, 0). Note that 2yone and 2xint can be written with integer numerator and

denominator of 2bdmdmn.

(7) A to D with C as intermediate quadrant, enter by crossing the y-axis, exit by crossing

x-axis. So we color quadrant B then examine three subcases: In quadrant A, the line

from (0, 2b− 1) to (2yhalf , 0); in quadrant C, the line from (2yhalf , 1) to (1, 2xhalf); in

www.manaraa.com

87

quadrant D, the line from (0, 2xhalf) to (2xint − 1, 0). 2yhalf and 2xhalf can be written

with integer numerator and denominator of 2bdmdmn by earlier calculation of yhalf and

xhalf and 2b− 1 can as well.

(8) A to D with C as intermediate quadrant, enter by crossing the y-axis, exit by crossing

the line x = 1. This differs from (7) only in quadrant D where we instead examine the

line from (0, 2xhalf) to (1, 2xone). 2xhalf and 2xone are integer multiples of
1

2bdmdmn

.

(9) A to D with C as intermediate quadrant, enter by crossing the line y = 1, exit by

crossing x-axis. This differs from (7) only in quadrant A where we instead examine the

line from (2yone, 1) to (2yhalf , 0). 2yone and 2yhalf are integer multiples of
1

2bdmdmn

.

Last, we show these cases exhaust all possibilities within symmetry. That is, there is

a simple transformation of any possible situation to one of the nine cases above. We now

enumerate all possible ways that a line can cross into and out of a unit square and show which

primary case applies after which simple transformations. Note that translations cannot be

applied as part of this process as this may result in failing to preserve the fact that there

is at least
1

2bdmdmn

between the x and y coordinate of each point. We now examine all 16

combinations of quadrants the line could cross and show that each combination is matched

by a primary after a simple reflection.

• A line not crossing this dyadic square requires only rules to color all quadrants the

same.

• A line crossing only quadrant C is case (1): such a line must enter from the y-axis and

exit to the x-axis or the line will enter another quadrant.

• A line crossing only quadrant A, B, or D would be reflections of lines crossing quadrants

C in case (1). Specifically, reflect over y = 1
2
, y = 1 − x, and x = 1

2
for quadrants A,

B, and D.

www.manaraa.com

88

• A line through quadrants C and D must enter C by crossing the y-axis or the x-axis.

It then will exit D by crossing the x-axis or the line x = 1.

– Line entering C by crossing y-axis and exiting D by crossing the x-axis: this is

case (2).

– Line entering C by crossing y-axis and exiting D by crossing x = 1: this is case

(3).

– Line entering C by crossing x-axis and exiting D by crossing the x-axis: impossible.

– Line entering C by crossing x-axis and exiting D by crossing x = 1: this is case

(4).

• A line through quadrants A and B is symmetric to the case for quadrants C and D

when we reflect over the line y = 1
2
.

• A line through quadrants A and D can enter by crossing the y-axis or the line y = 1

and exit by crossing the x-axis or the line x = 1

– Line entering A by crossing y-axis and exiting D by crossing the x-axis: must pass

through quadrant C unless also exiting by crossing point (1, 0) so case (6) applies.

– Line entering A by crossing y-axis and exiting D by crossing x = 1: this is case

(6).

– Line entering A by crossing y = 1 and exiting D by crossing the x-axis: this is

case (5).

– Line entering A by crossing y = 1 and exiting D by crossing x = 1: must pass

through quadrant B unless also entering by crossing the point (0, 1) so case (5)

applies.

• A line through quadrants A and C is symmetric to the case for quadrants C and D

after reflection over the line y = x.

www.manaraa.com

89

• A line through quadrants B and C is symmetric to the cases for quadrants A and D

when reflected over the line x = 1
2
.

• A line through quadrants B and D is symmetric to the cases where we examined

quadrants A and C when reflected over the line x = 1
2
.

• A line through quadrants A, C, and D would have to cross through quadrant C as an

intermediate quadrant. It would enter A after crossing either the y-axis or the line

y = 1 and exit D after crossing either the x-axis or the line x = 1.

– Line enters A by crossing the y-axis, exits D by crossing the x-axis: this is case

(7).

– Line enters A by crossing the y-axis, exits D by crossing the line x = 1: this is

case (8).

– Line enters A by crossing the line y = 1, exits D by crossing the x-axis: this is

case (9).

– Line enters A by crossing the line y = 1, exits D by crossing the line x = 1:

impossible, this line would have to avoid quadrant C somehow.

• A line through quadrants A, B, and C is symmetric to a line crossing A, C, and D

after reflection over y = 1
2
.

• A line through quadrants A, B and D would have to cross quadrant B as an intermediate

quadrant. It is symmetric to the 4 cases explored in examining lines through quadrants

A, C, D if reflected over y = 1− x.

• A line through quadrants B, C, and D would be symmetric to the cases of the line

through quadrants A, C, and D when reflected over the line x = 1
2
.

• There is no possible line through all quadrants.

www.manaraa.com

90

Note that we have omitted lines that satisfy more than one subcase. For example, a line

that enters from the point on both the y-axis and the line y = 1 or exits by crossing the

x-axis and the line x = 1. Using either applicable analysis identifies a correct transformation

and rules set.

So, by exhaustion, all possible lines are represented (via symmetry) by the nine primary

cases we examined. Since there exist rules for each of these nine cases, each case determin-

istically leads to another, and there is a finite number of ways the line can cross any dyadic

square. So there is a finite set of rules that specifies the behavior of a MRCA to compute a

line.

www.manaraa.com

91

CHAPTER 5. KOLMOGOROV COMPLEXITY AND

REGULAR LANGUAGES

Section 5.1 introduces the basics of Kolmogorov complexity necessary to examine regular

languages including the Incompressibility Theorem. Section 5.2 explains how the tools of

Kolmogorov complexity can be applied to regular languages. Section 5.3 illustrates this

approach through use of a simple method of showing languages are nonregular with several

examples. Section 5.4 shows the common pumping lemma for regular languages, a language

that is nonregular but satisfies the pumping lemma, and less common pumping lemmas that

seem to require advanced tools from graph theory to prove.

5.1 Kolmogorov Complexity Results

Before discussing the KC regularity theorem of Li and Vitányi [29], we introduce some

basic notation related to regular languages and finite automata. We assume that, in an

undergraduate course, these topics will have been discussed in more detail.

Let Σ be a finite nonempty alphabet, and let Q be a finite nonempty set of states. A

transition function is a function δ : Σ × Q → Q. We extend δ to δ̂ on Σ∗ by δ̂(λ, q) = q

and δ̂(a1 . . . an, q) = δ(an, δ̂(a1 . . . an−1, q)). A (deterministic) finite automaton (DFA) A is a

quintuple (Q,Σ, δ, s, F), where s ∈ Q is a distinguished initial state and F ⊆ Q is a set of

final states. A language L is any subset of Σ∗. A language accepted by DFA A is the set

L = {x | δ̂(x, q0) ∈ F}.

We now discuss some basic results in the area of Kolmogorov complexity assuming knowl-

www.manaraa.com

92

edge of Turing machines. These topics are not covered in a typical undergraduate course so

we include a more complete discussion.

Definition 5.1.1 ([53; 24; 9]). Let M be a Turing machine, and let x ∈ {0, 1}∗. The plain

Kolmogorov complexity of x with respect to M is

CM(x) = min{|π| | π ∈ {0, 1}∗ and M(π) = x},

where min ∅ =∞.

Let C denote the (plain) Kolmogorov complexity function with respect to a universal

Turing machine U . We note that universal Turing machines U exist and are optimal: for

any machine M , there exists optimality constant cM such that for all x ∈ {0, 1}∗ C(x) ≤

CM(x) + cM [53; 24; 9].

We now show that C(x) cannot be significantly greater than |x|.

Lemma 5.1.2. There is a constant c0 ∈ N such that for all x ∈ {0, 1}∗,

C(x) ≤ |x|+ c0.

Proof. Let M be a Turing machine such that M(x) = x for all x ∈ {0, 1}∗, and let c0 = cM

be the optimality constant for M given by the optimality of our universal Turing machine.

Then for all x ∈ {0, 1}∗,

C(x) ≤ CM(x) + cM

= |x|+ cM

= |x|+ c0.

An important concept is that of incompressibility or that there are strings that cannot

be described with a simple Turing machine.

www.manaraa.com

93

Definition 5.1.3. For each constant c we say that a string x is c-incompressible if C(x) ≥

log(x)− c.

The theorem most relevant to our purpose is the Incompressibility Theorem [24].

Theorem 5.1.4. Let c be a positive integer. Every finite set A of cardinality m has at least

m(1− 2−c) + 1 elements x with C(x) ≥ logm− c.

Proof. The number of programs of length less than logm− c is

logm−c−1∑
i=0

2i = 2logm−c − 1.

Hence, there are at least m − m2−c + 1 elements in A that have no program of length

less than logm− c.

Informally, the Incompressibility Theorem states that, given any finite set, there always

exists high complexity elements.

The following theorem is useful in applying the Incompressibility Theorem to regular

languages. It improves existing proofs by strengthening a bound of 2c+O(1) [10] to 2c+1 while

using a simpler argument.

1

.

. .
.
. .

.

. .
.
. .

.

. .
.
. .

.

. .
.
.

0

0

00

0

00

1

1

1 1 1

.

Figure 5.1 Representation of sequences as paths in a binary tree.

www.manaraa.com

94

Theorem 5.1.5. Let c ∈ N.

1. There are infinitely many positive integers n for which at most 2c+1 strings x ∈ {0, 1}n

satisfy C(x) ≤ c+ log n.

2. There are at most 2c+1 sequences S ∈ {0, 1}∞ such that, for all n ∈ N, C(S[0 . . . n−1]) ≤

c+ log n.

Proof. Let c ∈ N.

1. For each n ∈ N, let

Bn = {x ∈ {0, 1}n | C(x) ≤ c+ log n}.

For each m ∈ Z+, define the average

bm =
1

m

m∑
n=1

|Bn|

of the cardinalities |B1|, . . . , |Bm|. Then, for every m we have

bm =
1

m

m∑
n=1

|Bn|

=
1

m

∣∣∣∣∣
m⋃
n=1

Bn

∣∣∣∣∣
≤ 1

m

∣∣{0, 1}≤c+logm
∣∣

<
1

m
2c+logm+1

= 2c+1

(
2logm

m

)
= 2c+1

In order for this to hold for every m, there must be infinitely many n for which

|Bn| ≤ 2c+1. For example, if there are a number of sets whose cardinality is larger than

www.manaraa.com

95

2c+1, it must be the case that there is a number of other sets of cardinality less than

2c+1 to ensure that the average cardinality at most 2c+1.

2. Figure 5.1 is a representation of sequences in S ∈ {0, 1}∞ where each sequence is repre-

sented by an infinite path in a binary tree where each choice is whether the next bit

of the sequence is 0 or 1. Strings are represented by finite paths in this tree and each

level of the tree includes all strings of a given length.

Now note that every subsequence S[0 . . . n − 1] is a string of length n. So, according

to the above, there are infinitely n for which 2c+1 strings x ∈ {0, 1}n satisfy C(x) ≤

c + log n. This means that, when we require our sequences S to be such that for all

n ∈ N, C(S[0 . . . n−1]) ≤ c+log n, there are infinitely many n where there are at most

2c+1 sequences in S. In other words, while there are an infinite number of sequences,

part 1 tells us that only 2c+1 sequences can obey the constraint C(S[0 . . . n − 1]) ≤

c + log n for all n (particularly including subsequence lengths n where there are only

2c+1 subsequences following this constraint).

It is important for many applications of our main topic, the KC Regularity Lemma, to

know that there are high-complexity strings no matter the length of the string. The following

Lemma and Corollary establish this.

Lemma 5.1.6. For any n, r ∈ N, if we choose a string x ∈ {0, 1}n according to the uniform

probability measure, then

Prob[C(x) < |x| − r] < 2−r.

www.manaraa.com

96

Proof.

Prob[C(x) < |x| − r] = 2−n|{x ∈ {0, 1}n | C(x) < n− r}|

≤ 2−n|{π ∈ {0, 1}∗ | |π| < n− r}|

= 2−n|{0, 1}n−r|

= 2−n(2n−r − 1)

< 2−r.

Corollary 5.1.7. For every n ∈ N, there exists x ∈ {0, 1}n such that C(x) ≥ |x|.

Proof. Taking r = 0 in Lemma 5.1.6 gives Prob[C(x) < |x|] < 1.

We now show that Kolmogorov complexity increases without bound.

Lemma 5.1.8. limn→∞C(sn) =∞.

Proof. Let m ∈ N, and let

Am = {x ∈ {0, 1}∗ | C(x) ≤ m}.

Then

Am = {U(π) | π ∈ {0, 1}≤m and U(π) halts}

by definition of C(x) so Am is finite. This means there exists nm ∈ N such that Am ⊆

{s0, s1, . . . , snm−1}. Then, for all n ≥ nm, sn 6∈ Am so C(sn) > m. This implies that C(sn)

grows without bound.

In addition to increasing without bound, the function f(n) = C(sn) is “almost contin-

uous” as a function of n. This is illustrated by the following theorem that shows that no

www.manaraa.com

97

computable function can add more than a bounded amount of information to its inputs and

the corollary based on it (when that function is the successor function).

Theorem 5.1.9. If g : {0, 1}∗ 99K {0, 1}∗ is computable, then there is a constant cg ∈ N

such that, for all x ∈ dom(g),

C(g(x)) ≤ C(x) + cg.

Proof. Let g be as given. Let M be a Turing machine such that

M(π) = g(U(π))

for all π ∈ {0, 1}∗, and let cg = cM where cM is the optimality constant for M . We know

that such a machine M exists because g is computable and, by definition, all operations of

U are computable so, for example, M could be just running U on π then applying function

g to the result.

To complete the proof, let x ∈ dom(g). Fix a program π ∈ {0, 1}∗ such that U(π) = x

and |π| = C(x). That is, π is the shortest program for U that produces x. Then

M(π) = g(U(π)) = g(x),

so

CM(g(x)) ≤ |π| = C(x)

by selection of π and finally

C(g(x)) ≤ CM(g(x)) + cM

≤ C(x) + cM

= C(x) + cg.

Corollary 5.1.10. There is a constant c ∈ N such that for all n ∈ N, |C(sn)−C(sn+1)| ≤ c.

www.manaraa.com

98

Proof. Apply Theorem 5.1.9 to the function g(sn) = sn+1 and let c = cg.

5.2 The Regularity Theorem

We now begin our discussion of how Kolmogorov complexity can be applied to show a

language is not regular. In this discussion, the instructor can either introduce the Myhill-

Nerode theorem separately or simply include the theorem and it’s proof as part of the proof

of the KC Regularity Lemma. We include both approaches.

We will assume the following format and terminology for the Myhill-Nerode theorem

when it is included previously in the course [19; 1].

Theorem 5.2.1. A language L ⊆ {0, 1}∗ is regular iff it is the union of equivalence classes

of a right-invariant equivalence relation of finite index on Σ∗.

Informally, we can view this theorem in the context of DFAs where each equivalence class

is represented by a state of the DFA and the final state is the equivalence class of strings

in L. We will denote the equivalence class of x ∈ Σ∗ under a relation (which is made clear

from context) as [x]. The requirement of right-invariance means that, if two strings x and

y are in the same equivalence class and we add the same string w to each, then xw and yw

are also in the same equivalence class. In the DFA analogy, x and y are in the same DFA

state so transitioning according to the same string w will result in the same new state.

To illustrate the approach of the KC Regularity Lemma, we start with one of the simplest

languages used to show nonregularity in undergraduate computational theory courses: L =

{0n1n | n ≥ 1}.

To see this language is nonregular by directly application of the Myhill-Nerode Theorem,

we must show that there is an infinite number of ways to index the right-invariant equivalence

relation over L. Pick any string 0i where i ≥ 0. The right-invariant equivalence class [0i]

includes all strings y such that, for all z ∈ Σ∗, 0iz ∈ L iff yz ∈ L. When n is set to a

www.manaraa.com

99

particular value, there is only one z for each i such that 0iz ∈ L so each equivalence class is

a singleton. However, L includes all values of n and there is one member of this equivalence

class per value of n so new equivalence classes exist for each value of n. This means the

index of the right-invariant equivalence relation over L is infinite.

This method of directly applying the theorem is generally difficult to convey to students

as it conveys little of the intuition of how regular languages work. Let us examine L using

the tools of Kolmogorov complexity.

Assume L is regular and D is a witness DFA to this fact. Consider processing any 0n1n

(for set value of n). Then there is a state q in D that we are in after n steps of an acceptable

string (i.e. after processing 0n). Then q and D form a description of n: by running D

initialized to state q on input consisting only of 1s, the first time D enters an accepting state

is after n consecutive 1s [29]. By our assumption, D accepts exactly L and the size of the

description of D and q is bounded by a constant c that is not dependent on n. So we can

compute n using a Turing machine that takes as input this combination of D and q which

means that C(n) ≤ c + O(1). But, by choosing n with C(n) ≥ log(n) via Theorem 5.1.4,

we obtain a contradiction for all large enough n. This means that no such DFA D can exist

and L is not regular. This approach mirrors more closely the human approach of trying to

build a finite state machine that always requires more states as n increases to compute the

language.

To formally generalize this application of Kolmogorov complexity, we show the equiva-

lence of regular languages and languages whose characteristic sequence is of low complexity.

We now define some terms used in this process.

Given a language A and a string x ∈ Σ∗, define Ax = {y ∈ Σ∗ | xy ∈ A}. We are

interested in two representations of the languages Ax: its characteristic sequence χAx and

list representation LAx . We now define the characteristic sequence and list representation of

any language A.

www.manaraa.com

100

Definition 5.2.2. The characteristic sequence of a language A ⊆ Σ∗ is the sequence χA ∈

{0, 1}∞ whose ith bit is

χA[i] = [[wΣ
i ∈ A]]

for all i ∈ N.

Informally, a characteristic sequence is a series of 0s and 1s where each 1 indicates a

member of A.

Definition 5.2.3. Let wΣ
n0
, wΣ

n1
, . . . be the enumeration of A in standard order (i.e., n0 <

n1 < n2 < . . .). Then, for each i ∈ N,

xi =

 0wΣ
ni

if 0 ≤ i < |A|

λ if i ≥ |A|.

The list representation of a language A ⊆ Σ∗ is the infinite sequence

LA = (x0, x1, x2, . . .)

of strings xi.

For each n ∈ N, we also define the string LA[n] ∈ {0, 1}∗ by the recursion

LA[0] = λ

LA[n+ 1] = LA[n]0|xn|1xn.

Call LA[n] the binary encoding of the list of the first n items in the list LA.

We are now equipped to characterize regular languages using Kolmogorov complexity. In

the following result due to Li and Vitányi [29], we write C(n) as C(sn) and vice versa.

Theorem 5.2.4. For each language A ⊆ Σ∗, the following conditions are equivalent.

(1) A is regular.

www.manaraa.com

101

(2) There is a constant aA ∈ N such that, for all x ∈ Σ∗ and n ∈ N,

C(LAx [n]) ≤ aA + C(n).

(3) There is a constant bA ∈ N such that, for all x ∈ Σ∗ and n ∈ N,

C(χAx [0 . . . n− 1]) ≤ bA + C(n).

(4) There is a constant cA ∈ N such that, for all x ∈ Σ∗ and n ∈ N,

C(χAx [0 . . . n− 1]) ≤ cA + log n.

Proof. (1)⇒ (2). Let A be regular. Then there is a DFA M = (Q,Σ, δ, s, F) such that

L(M) = A. Without loss of generality, assume that Q ⊆ {0, 1}m for some m ∈ N.

There is a straightforward algorithm that, given q ∈ Q, determines whether there is a

path from q to a state in F that crosses a loop. Specifically, start in state q then simulate the

transition for each possible input. Track what states this exploration visits (and has visited

in the past) and try all possible transitions from each successor state. The key is that, once

we revisit a state, do not try all possible transitions from that state. Eventually we will visit

all states reachable from q as well as discovering states on a loop from q.

This algorithm thus determines whether the set

A(q) = {y ∈ Σ∗ | δ̂(q, y) ∈ F}

is infinite. It is straightforward to construct a Turing machine M̂ that, on input qπ, where

q ∈ Q, π ∈ {0, 1}∗, and U(π) = sn, outputs the string LA(q)[n]. Let aA = m + ĉ, where ĉ is

an optimality constant for M̂ and m is the log of the number of states in M̂ .

To see that (2) holds, let x ∈ Σ∗ and n ∈ N. Let q = δ̂(s, x), and let π ∈ {0, 1}∗ be such

that U(π) = sn and |π| = C(n). Then

M̂(qπ) = LA(q)[n] = LAx [n],

so

www.manaraa.com

102

C(LAx [n]) ≤ CM̂(LAx [n]) + ĉ

≤ |qπ|+ ĉ

= m+ C(n) + ĉ

= aA + C(n),

i.e., (2) holds.

(2)⇒ (3). Assume that (2) holds, with aA as witness. Define a partial function g :

{0, 1}∗ 99K {0, 1}∗ as follows. Let a string u ∈ {0, 1}∗ be in the domain of g if it has the

form

u = 0|y0|1y00|y1|1y1 . . . 0
|yk|1yk

for some k ∈ N, and there exists 0 ≤ j ≤ k such that

(i) for each 0 ≤ i < j, yi begins with a 0;

(ii) y0, . . . , yj−1 appear in standard order; and

(iii) for each j ≤ i < k, yi = λ.

If u is in the domain, then g(u) is the unique string v ∈ {0, 1}k with the following

properties.

(a) For each 0 ≤ i < j, if yi = 0sni
, where ni < k, then v[ni] = 1.

(b) All other bits of v are 0.

Informally, this function g translates a list representation to a characteristic sequence. g

is clearly computable so Theorem 5.1.9 tells us that there is a constant cg ∈ N such that, for

all u ∈ dom(g),

www.manaraa.com

103

C(g(u)) ≤ C(u) + cg.

Let bA = aA + cg. To see that (3) holds, let x ∈ Σ∗ and n ∈ N. Then

g(LAx [n]) = χAx [0 . . . n− 1],

so

C(χAx) = C(g(LAx [n]))

≤ C(LAx [n]) + cg

= aA + C(n) + cg

= bA + C(n),

i.e., (3) holds.

(3)⇒ (4). Assume that (3) holds. Let cA = bA + c0 + 1, where c0 is the constant from

Lemma 5.1.2 that limits the complexity of x. Then, for all x ∈ Σ∗ and n ∈ Z+,

C(χAx [0 . . . n− 1]) ≤ bA + C(sn)

≤ bA + |sn|+ c0

= bA + blog(n+ 1)c+ c0

≤ bA + c0 + 1 + log n

= cA + log n,

i.e., (4) holds. The second equality is due to Lemma 5.1.2. A similar proof can be used

to show that there is a constant a′A ∈ N such that, for all x ∈ Σ∗ and n ∈ N, C(LAx [n]) ≤

a′A + log n.

(4)⇒ (1). Assume that (4) holds. Note that χAx is an infinite sequence and we require

that prefix strings of this sequence follow the same inequality as specified in Theorem 5.1.5

(part 2) with c = cA. Since there is a finite number of such sequences χAx , the set

www.manaraa.com

104

φA = {Ax | x ∈ Σ∗}

is finite (specifically, it has 2c+1 members). Define a relation ≈ on Σ∗ by

x ≈ x′ ⇔ Ax = Ax′ .

Then ≈ is an equivalence relation and has finite index, i.e., only finitely many equivalence

classes as φA is finite. Also, for all x, x′, y ∈ Σ∗,

x ≈ x′ ⇒ Ax = Ax′

⇒ (∀w)xw ∈ A⇔ x′w ∈ A

⇒ (∀z)xyz ∈ A⇔ x′yz ∈ A

⇒ Axy = Ax′y

⇒ xy ≈ x′y,

i.e., ≈ is right-invariant. If the Myhill-Nerode theorem is discussed in the class previously,

this is enough to show that A is regular. However, in case the Myhill-Nerode theorem is not

discussed, we now show A is regular directly.

For each x ∈ Σ∗, let [x] be the ≈-equivalence class of x. Let M = (Q,Σ, δ, s, F) where

Q = {[x] | x ∈ Σ∗},

s = [λ],

F = {[x] | x ∈ A},

and δ : Q× Σ→ Q is defined by

δ([x], a) = [xa]

for all a ∈ Σ. Then Q is finite (because ≈ has finite index) and δ is well-defined (because ≈

is right-invariant), so M is a DFA. An easy induction shows that, for all [x] ∈ Q and y ∈ Σ∗,

www.manaraa.com

105

δ̂([x], y) = [xy].

It follows that, for all x ∈ Σ∗,

x ∈ L(M) ⇔ δ̂(s, x) ∈ F

⇔ δ̂([λ], x) ∈ F

⇔ [λx] ∈ F

⇔ [x] ∈ F

⇔ x ∈ A,

whence L(M) = A. Hence A is regular.

From now on, we write C(wΣ
n) = C(sn). The following corollary of this result we call the

Kolmogorov complexity (KC) regularity lemma [29].

Corollary 5.2.5. If A ⊆ Σ∗ is regular, then there is a constant dA ∈ N such that, for all

x, yxn ∈ Σ∗, if yxn is the nth string in Ax (counting from 0 in the standard ordering of Σ∗),

then

C(yxn) ≤ dA + C(n).

Proof. For any language B ⊆ Σ∗, define partial function

hB : {0, 1}∗ 99K {0, 1}∗

such that, if u = LB[n + 1] and |B| > n, then hB(u) = wΣ
n , where wΣ

n is the nth element of

B. (If u is not of this form, then h(u) is undefined.) Then hB is computable, so there is a

constant ch for hB as in Theorem 5.1.9. Informally, hB simply extracts the last element of

B from a list representation of B.

www.manaraa.com

106

Assume that A is regular. Then there is a constant aA ∈ N as in condition (2) of

Theorem 5.2.4. Let dA = aA+ ch+ c with c as the gap between C(sn) and C(sn+1) identified

in Corollary 5.1.10. Then, for all x, yxn ∈ Σ∗, if yxn is the nth string in Ax, we have

C(yxn) = C(hA(LAx [n+ 1]))

≤ C(LAx [n+ 1]) + ch

≤ aA + C(n+ 1) + ch

≤ aA + C(n) + c+ ch

= dA + C(n).

The intuition behind the Kolmogorov complexity (KC) regularity lemma is that a regular

language A can be computed by a DFA M and, to compute a yxn, we start in the state δ̂(q0, x)

(where q0 is the initial state of M) and count off n steps to find yx1 , yx2 , . . . , yxn.

5.3 Usage Examples

In order to most conveniently apply the results of the previous section, we restate Corol-

lary 5.2.5 in the following contrapositive form.

Corollary 5.3.1. If a language A ⊆ Σ∗ has the following property, then it is not regular.

For all d ∈ N, there exists x, yxn ∈ Σ∗ and n ∈ N such that yxn is the nth string in Ax and

C(yxn) > d+ C(n).

In other words, this property states that there is an xyxn ∈ A that cannot be computed

simply by running a DFA — for some reason that differs in each proof using this Corollary,

we need a longer Turing machine program than a regular language does. We now apply this

corollary to several elementary examples of nonregular languages.

www.manaraa.com

107

Example 5.3.2. A = {0n1n | n ∈ N} is not regular.

Proof. Let d ∈ N. By Lemma 5.1.8, there exists k ∈ N such that C(1k) > d + C(0) (where

sn = 1k in the lemma). By applying Corollary 5.3.1 with x = 0k, y = 1k, and n = 0, A is

not regular.

Example 5.3.3. B = {0p | p ∈ N is prime} is not regular.

Proof. Let d ∈ N. It is well known that there are arbitrarily large gaps in the primes. This

is because, for any m ∈ Z+, all n with m!+2 ≤ n ≤ m!+m are composite. By Lemma 5.1.8,

there exist consecutive primes p, q such that C(0q−p) > d+C(1). By applying Corollary 5.3.1

with x = 0p, y = 1q−p, and n = 1, A is not regular.

Example 5.3.4. B = {0k1` | gcd(k, `) = 1} is not regular.

Proof. Let d ∈ N. By Lemma 5.1.8, there exists a prime p such that C(1p−1) > d + C(1).

By applying Corollary 5.3.1 with x = 0(p−1)!, y = 1p−1, and n = 1, A is not regular.

5.4 Comparison with Pumping Lemmas

We now discuss some of the history of the pumping lemma, an alternate method of

showing a language is nonregular, to see why the KC Regularity lemma (Corollary 5.2.5) is

more intuitive and/or useful. First, we define what a pump is.

Definition 5.4.1. Let L ∈ Σ∗, x ∈ Σ∗, and x = uvw, then v is a pump for x relative to L

iff, for all i ≥ 0, u(v)iw ∈ L iff x ∈ L.

The following is often referred to as the Pumping Lemma.

Lemma 5.4.2. Let A ⊆ Σ∗ be a regular set. Then the following property holds of A.

There exists k ≥ 0 such that for any strings xyz ∈ A and |y| ≥ k, there exist strings

u, v, w such that y = uvw, v 6= λ, and for all i ≥ 0, the string xuviwz is in A (i.e., v is a

pump for yz relative to L).

www.manaraa.com

108

It can be easily proven that this is a property of all regular languages [25]. This easy

explanation is key to developing any method of showing nonregularity for an undergraduate

course. It is most often used to show nonregularity through its contrapositive form.

While this pumping property is necessary for all regular languages, it is not sufficient.

We can show that this pumping condition does not even imply a language is recursive.

Theorem 5.4.3 ([12]). There are 2ℵ0 languages which satisfy the pumping condition (Lemma 5.4.2).

Proof. Let Σ = {ai,j | 0 ≤ i, j ≤ 3}. We define two maps fa, fb : Σ→ Σ where

fa(ai,j) = ai+1,j mod 4,

fb(ai,j) = ai,j+1 mod 4.

The functions fa, fb are permutations of Σ and have the property that applying two

functions can never have the same effect as applying one. This is because applying two

functions can increment both subscripts i, j by one (mod 4) or one subscript by two (mod

4) and a single application of a function can never achieve this.

Let n1, n2, . . . , nm,m ∈ N and σ1, σ2, . . . , σm ∈ Σ defined recursively: σ1 = a0,0 and, for

all ` < m, σ`+1 is either fa(σ`) or fb(σ`). Then define a string as “legal” if it is of the form

x = (σ1)n1(σ2)n2 . . . (σm)nm .

Now let Σ1 = {a, b} and language X ⊆ Σ∗1. If we consider each σ` as being the result of

a “transition” due to fa or fb, there are m − 1 transitions and they correspond to a string

y in Σ∗1. So we say x encodes y. As an example, x = a0,0a1,0a1,0a1,1 is legal with n1 = 1,

n2 = 2, n3 = 1, and y = ab.

Let the “parity” of a string in Σ be the sum of all subscripts i, j (mod 2). Now we let

L(X) = {x | x is legal and x codes a y such that y ∈ X}
⋃
{x | x is illegal and the parity of

x is 0}.

Clearly the map L is one-to-one. We shall now show that L(X) always satisfies the

pumping condition.

www.manaraa.com

109

Let k = 6 and zyz′ ∈ Σ∗∗ such that |y| ≥ 6. We now consider three cases:

(1) zyz′ is legal and y contains a double σ. Let y = uσw where the last symbol of u is also

σ and let v = σ. Then, for all i, zu(σ)iwz′ is legal and codes the same x that zyz′

does. So the pumping condition holds.

(2) zyz′ is legal but contains no double σ. We now have to examine parities in subcases.

Say that zyz′ ∈ L(X) and has odd parity. Then y must itself contain a symbol of odd

parity. Let σ be that symbol and y = uvw. We can choose v so that it is not the last

symbol of y.

Then i ≥ 1, zu(v)iwz′ codes the same string x as zyz′ and is legal so zu(v)iwz′ ∈ L(X).

For i = 0, zu(v)iwz′ = zuwz′ has zero parity and is illegal so again zu(v)0wz′ ∈ L(X).

The remaining subcases where zyz′ has even parity and/or zyz′ 6∈ L(X) are similar.

(3) zyz′ is illegal. The illegality may be caused by the initial symbol being something other

than a0,0 or by a bad transition. In any case zyz′ contains a subpiece y′ of length ≤ 2

such that saving that piece will preserve illegality. Hence |y| ≥ 6, we can find a v′ such

that (a) v′ is disjoint from y′ and (b) |v′| = 2.

Now let v be a substring of v′ of parity 0. There must be a nontrivial such substring

with one or two symbols. Let y = uvw. Then, for all i ≥ 0, zu(v)iwz′ has the same

parity as zyz′ and is illegal because zu(v)iwz′ is in L(X) iff zyz′ is.

We can use this fact to identify a context-free, nonregular language that satisfies Lemma 5.4.2

by applying the transformation L given in the proof of Theorem 5.4.3 above to {anbn | n ≥ 0}.

Lemma 5.4.4 ([12]). There exists a language X that is context-free and satisfies Lemma 5.4.2

but is not regular.

∗We use z and z′ instead of the x and z used in Lemma 5.4.2 to avoid conflation with x ∈ Σ∗ mentioned
earlier.

www.manaraa.com

110

Proof. Consider X = {anbn | n ≥ 0} and the strings y encoding them using the procedure

given in the proof of Theorem 5.4.3 above. Specifically, the following context-free rules accept

only X0 = {anbn | n ≥ 0, n = 0 mod 4}.

S → A0,0A1,0A2,0A3,0SA0,1A0,2A0,3A0,0

S → λ

Ai,j → ai,jAi,j

Ai,j → λ

We can similarly define X1, X2, and X3 and, as the finite union of context-free languages

is context-free, X is context-free. By reasoning given in Theorem 5.4.3, L(X) is also context

free and satisfies the pumping condition given in Lemma 5.4.2.

But the set cannot be regular. Consider strings yi such that yi represents ai, zi represents

bi, and i is divisible by 4. Now, for all i, j ∈ [0, 4] ∩ N, if i 6= j then yizi ∈ L(X) and

yjzi 6∈ L(X). Hence, by the Myhill-Nerode Theorem, L(X) is not regular.

There are more complicated-to-prove versions that are both necessary and sufficient con-

ditions for regularity [20; 12; 56; 60]. Here is a first necessary and sufficient pumping condi-

tion [20] that is easy to prove but is difficult to apply.

Theorem 5.4.5. L is regular if and only if there is a k such that, for all x ∈ Σ∗, if |x| ≥ k,

then ∀u, v, w x = uvw, v 6= λ, and ∀z v is a pump for xz relative to L. I.e., for all i ≥ 0

and z ∈ Σ∗, u(v)iwz ∈ L iff xz ∈ L.

Proof. The following proof emerges directly from the Myhill-Nerode Theorem [12].

It is sufficient to show that, if ≡ is the Nerode equivalence relation over L then ∀x ∃x′

such that |x′| < k and x ≡ x′. Then as there are only finitely many x′ with |x′| < k, ≡ has

finite index. It is sufficient to show this condition as follows: if |x′| ≥ k then there is an x′′

such that |x′′| < |x| and x ≡ x′′ as repeating this process will eventually yield the desired x′.

www.manaraa.com

111

Now note that, given u, v, w, x as in the hypothesis, x ≡ uw by setting i = 0 and

|uw| < |x|.

We can show that this is true directly [20] as well. In both cases, the “only if” part of

the theorem is true and follows easily. In Theorem 5.4.5, we must pump not just x but xz

with z ∈ Σ∗ which makes it difficult to apply. We can also prove that the following, “local”

block pumping property is necessary and sufficient for regularity as well [12].

Property 5.4.6. L ⊆ Σ∗ has the block pumping property if there is a k such that, for all

x,w, y1, . . . , yk, w
′ in Σ∗, if x = wy1 . . . ykw

′ then there exist l, j 1 ≤ l ≤ j ≤ k such that

ylyl+1 . . . yj is a pump for x relative to L.

That this property is necessary and sufficient for regularity is shown by letting i = 0 in

the property (called the block cancellation property) and applying a finite version of Ramsey’s

theorem from graph theory [12]. It was later shown that the language of a finitely generate

free monoid is regular iff it satisfies the positive block pumping property, Property 5.4.6 with

i > 0 [60]. However, the proof of both the block pumping property’s and Theorem 5.4.5’s

equivalence to regular languages is involved and not easily taught at the undergraduate level.

www.manaraa.com

112

CHAPTER 6. ESSENTIAL HIDDEN VARIABLES IN

BAYESIAN NETWORKS

In this chapter, we change gears to examine how an aspect of a model can be viewed

under a different light. Specifically, we investigate a new way to view hidden variables.

After an example to motivate our discussion in Section 6.1, we begin our examination of

hidden variables in Bayesian networks with notation and definitions (Section 6.2) including

new terminology to characterize hidden variables. We present an exploratory algorithm that

systematically examines all networks of a size for the existence of essential hidden variables.

Since the number of such networks is exponential in that size, we also present a number of

optimizations (Section 6.3). We conclude with the experimental results of these algorithms

and verification that the constraint-based approach [39] yields the same results as systematic

approaches.

Through an examination of all networks up to size 8, we discover that a Bayesian network

that has an essential hidden variable must have an embedded “W network” edge set (see Sec-

tion 6.2 for definition). Although we are not able to produce any general independence-based

characterization of the relationships that must hold for an essential variable to be present,

our results for small networks can be used in future work to establish general necessary and

sufficient conditions for essential hidden variables.

www.manaraa.com

113

MST

MSG SAT

HST

(a)

MST

MSG SAT

HST

(b)

AA

Figure 6.1 Two Bayesian networks representing the discussed data (a) without and (b)
with hidden variable AA, shown shaded.

6.1 Motivating Example

Consider the case of modeling four attributes from data collected from high school grad-

uates: middle school grades (MSG), average middle and high school teachers’ rating (MST

and HST, respectively) for the teachers the student had, and the student’s SAT score (SAT)∗.

Let us say that a set of data collected gives the following situation: For a randomly selected

student for whom no information is known about their MSG, their MST does not influence

(has no statistical dependence with) their SAT score. However, for a randomly chosen stu-

dent with a high MSG, they are more likely to do well on their SATs if MST is high. In

addition, for a randomly chosen student with low MSG, they tend to do poorly on their

SATs if their MST is low.

This situation may occur if a student that simply has good teachers in middle school

(high MST) are no more or less likely to do well on the SATs than another other student

with worse middle school teachers. However, the data may indicate that those students who

have good grades in middle school (high MSG) in addition to good middle school teachers

(high MST) will do well on the SATs compared to other students with low grades and good

teachers or good grades but poor teachers.

A Bayesian network representing this situation is depicted in Figure 6.1(a). While this

∗The SAT, or Scholastic Aptitude TestTM, is a standard test administered by the Educational Testing
Service (ETSTM) and used by colleges to decide whether to admit undergraduate students.

www.manaraa.com

114

network correctly represents the hypothesis that the middle school teacher ratings (MST) are

(unconditionally) unrelated to the SAT score, it does not have a mechanism for representing

the relationship between MST and SAT given MSG. This relationship can be represented

by adding a hidden variable we label AA (“academic aptitude”) as shown in Figure 6.1(b).

Even though AA cannot be measured, the existence of an attribute between middle school

grades (MSG) and SAT score allows representation of the relationship between MST and

SAT score given a high MSG. Intuitively, a high MSG and high MST indicates a high AA

which, in turn, indicates that the student will do well on the SAT. Conversely, a low MSG

and low MST indicates a low AA which tends to adversely affect the SAT score.

If a few more relationships hold in the data, we show in this chapter that AA is actually

an essential hidden variable. This means that no network over the 4 measured attributes

{MST,MSG,HST, SAT} can represent all the relationships described by our hypothetical

data without a hidden variable. Specifically, methods we examine give a way to verify

that the structure implied by our data cannot be represented by a Bayesian network of

size 4. The network in Figure 6.1(b) therefore is a more accurate representation of our

data distribution so inference using this network will be more accurate than the network in

Figure 6.1(a). We call this hidden variable essential to representing the distribution with a

Bayesian network (i.e., an essential hidden variable) because the addition of a hidden variable

enables representation of the underlying distribution more accurately than a smaller network

can.

6.2 Bayesian Network Notation

This section describes terminology used in the discussion of essential hidden variables.

www.manaraa.com

115

(a)

X

X Y3

1 2 Y3

1 2

(b)

Figure 6.2 Paths from X to Y through simple path P = {1,2,3} in an (a) undirected
and (b) directed graph.

6.2.1 Basic Graph Terminology

The translation of a distribution to a graph maps each attribute to a vertex in the

graph. Edges in the graph represent relationships between attributes where the nature of

the relationship depends on the graphical model. We will refer to attributes and vertices

interchangeably in this chapter. Bold letters denote sets of attributes. Capital letters denote

variable names (X, Y , Z, etc.), while small letters denote values for these variables (x, y, z,

etc.).

In a directed graph, a directed simple path P between two distinct vertices X and Y refers

to a list of unique vertices that lie between X and Y such that there is an edge from X to

the first vertex, between the first vertex and the second, etc. up to having an edge from the

last vertex in the list to Y (Figure 6.2(a)). A simple path in an undirected graph is the same

except that the edges are undirected (Figure 6.2(b)). We may also refer to undirected paths

in directed graphs — these are paths on the graph that result from ignoring the directions

of edges. There cannot be any cycles in either type of simple path because repeat vertices

are not allowed.

Given a vertex V in a directed graph, we can identify several classes of related vertices.

All vertices with a directed edge to V are called parents of V and denoted as Par(V), and

all vertices with a directed edge from V are called children of V . The set of descendants of

www.manaraa.com

116

V , denoted as Desc(V), is defined recursively as follows: (a) V is in Desc(V) and (b) any

child of a vertex in Desc(V) is in Desc(V). In Figure 6.2(a), all vertices are descendants

of X.

6.2.2 Independence Notation

Attribute sets X and Y are said to be (conditionally) independent given attribute set Z

(denoted X ⊥⊥ Y | Z) iff Pr(X = x | Y = y,Z = z) = Pr(X = x | Z = z) for all values x of

X, y of Y and z of Z. This means that, in the subpopulation where Z=z, the value of X is

not related to the value of Y. Z is said to be in evidence with regard to this independence

as we must have evidence that Z=z for this independence between X and Y to hold.

X and Y are said to be dependent given Z (denoted X 6⊥⊥ Y | Z) if the conditions

for X ⊥⊥ Y | Z do not hold. Marginal independence between X and Y is denoted by

X ⊥⊥ Y when the conditioning set is empty—similarly, marginal dependence is denoted

X 6⊥⊥ Y. We will abuse this notation slightly when a set is a singleton: instead of writ-

ing {X} ⊥⊥ {Y } | {Z} we will write X ⊥⊥ Y | Z.

For attributes X, Y , and Z, (X ⊥⊥ Y | Z)P denotes that the independence relation

X ⊥⊥ Y | Z is reflected in the distribution P . For a graphG, (X ⊥⊥ Y | Z)G denotesX ⊥⊥ Y | Z

can be inferred by a well-defined set of rules such as d-separation (defined below).

6.2.3 Bayesian Network Formalisms

To define Bayesian networks and related properties, we utilize the Markov assumption.

Definition 6.2.1. The Markov Assumption for a network G = (U,E) states that

∀X ∈ U, X ⊥⊥ [U−Desc(X)] | Par(X).

Intuitively, the Markov Assumption states that each attribute is independent of its non-

descendants given its parents. It is critical for many proofs involving Bayesian networks that

the Markov Assumption hold.

www.manaraa.com

117

The following formal definitions are adopted from [45].

Definition 6.2.2. A graph G is an independence map (I-map) of distribution P over at-

tributes U if there is a one-to-one correspondence between the elements of U and the vertices

U of G such that for all disjoint subsets X,Y,Z, (X ⊥⊥ Y | Z)G ⇒ (X ⊥⊥ Y | Z)P .

Intuitively, a graph is a I-Map if all independences represented in the graph are repre-

sented in the distribution.

Definition 6.2.3. A graph G is a minimal I-map of distribution P if no edges can be deleted

from G without altering the property that G is an I-map of P .

Definition 6.2.4. Given a probability distribution P over a set of attributes U, a directed

acyclic graph (DAG) D = (U,E) is called a Bayesian network of P iff D is a minimal I-map

of P .

We will primarily be interested in distributions that are faithful [55]:

If all and only the conditional independence relations true in [probability distribution]

P are entailed by the Markov [assumption] applied to [graph] G, we will say that

P and G are faithful to one another. We will, moreover, say that a distribution

P is faithful provided there is some directed acyclic graph to which it is faithful.

(page 13)

Many distributions are not faithful. As such, one goal of a procedure that generates

a Bayesian network could be to get as close to a faithful Bayesian network for the input

distribution as possible. Often this is balanced against a desire for simple networks, because

these allow easier human understanding as well as contain conditional probability tables with

fewer entries, leading to faster inference and less danger of overfitting the model to the data.

To derive the independences represented in Bayesian networks, we use the following d-

separation rules :

www.manaraa.com

118

X ⊥⊥ 2 | {1} X ⊥⊥ 2 | {1, 3} X ⊥⊥ 2 | {1, Y }
X ⊥⊥ 2 | {1, 3, Y }
X ⊥⊥ 3 | {1} X ⊥⊥ 3 | {2} X ⊥⊥ 3 | {1, 2}
X ⊥⊥ 3 | {1} X ⊥⊥ 3 | {2} X ⊥⊥ 3 | {1, 2}
X ⊥⊥ Y | {1} X ⊥⊥ Y | {1, 2} X ⊥⊥ Y | {1, 2, 3}
X ⊥⊥ Y | {2} X ⊥⊥ Y | {2, 3} X ⊥⊥ Y | {3}
X ⊥⊥ Y | {1, 3}
1 ⊥⊥ Y | {2} 1 ⊥⊥ Y | {3} 1 ⊥⊥ Y | {2, 3}
1 ⊥⊥ Y | {2, X} 1 ⊥⊥ Y | {3, X} 1 ⊥⊥ Y | {2, 3, X}
1 ⊥⊥ 3 | {2} 1 ⊥⊥ 3 | {2, X} 1 ⊥⊥ 3 | {2, Y }
1 ⊥⊥ 3 | {2, X, Y }
2 ⊥⊥ Y | {3} 2 ⊥⊥ Y | {3, 1} 2 ⊥⊥ Y | {3, X}
2 ⊥⊥ Y | {3, 1, X}

Table 6.1 Independences present in the Bayesian network appearing in Figure 6.2(a).

Definition 6.2.5 ([45]). Given a directed, acyclic graph G = (U,E), for all disjoint sets

X,Y,Z ⊆ U, (X ⊥⊥ Y | Z)G if along every path between a node in X and a node in Y there

is a node W satisfying one of the following two conditions: (1) W has converging arrows

and none of Desc(W) are in Z, or (2) W does not have converging arrows and W is in Z.

An example of a Bayesian network for some distribution is given in Figure 6.2(a), where U

= {X, Y, 1, 2, 3} and E = {(X, 1), (1, 2), (2, 3), (3, Y)}. The Bayesian network of Figure 6.2(a)

implies exactly the conditional independence relations given in Table 6.1.

6.2.4 Hidden Variables

Definition 6.2.6. An attribute is said to be a hidden variable if nothing is known about the

distribution of the attribute.

Intuitively, hidden variables are an extreme form of missing data—hidden variables have

all of their data missing. As such, hidden variables can never appear in any a statement about

independence. However, note that the definition is more general—it includes situations where

we have no knowledge of the parametric family of distributions that the hidden variable’s

www.manaraa.com

119

4HH

2

1

3

Figure 6.3 H labeled as a hidden variable in the W-network (attributes 1,2,3,4 are not
hidden).

distribution is a member of, as well as when we also lack knowledge about the values of the

parameters of the family. The concept of a hidden variable therefore includes attributes for

which we do not even know the number of states of that variable.

Figure 6.3 depicts an example where H is a hidden variable. Independences generated

from the graph with d-separation would include 1 ⊥⊥ 4 | 2 but not ones about H and another

variable (H ⊥⊥ 4 | 2) or with H in evidence (2 ⊥⊥ 3 | H).

There are two perspectives on the use of hidden variables in Bayesian networks. The first

is to optimize the rank of a Bayesian network according to some score:

Definition 6.2.7. An optimizing hidden variable in a Bayesian network B = (U,E) given

some scoring method S is a hidden variable HO that, when added to B, provides a higher

score S(B′), where B′ = (U ∪ {HO}, E ′), than any network of the same size as B without

HO.

Optimizing hidden variables are usually introduced in the process of a search over the

space of possible Bayesian networks that represent a set of independences. Most scoring

methods for Bayesian networks explicitly balance the ability of the network to represent the

data against the simplicity of the network.† By mandating a simple network for a data set

(in terms of a low number of edges and hidden variables), we avoid overfitting our model to

our data set and are more likely to create a model that is understandable by humans.

†Searching for the simplest possible network amongst networks that represent the input data well is often
referred to as following Occam’s Razor, that “one should not increase, beyond what is necessary, the number
of entities required to explain anything”[54].

www.manaraa.com

120

(a)

H

(b)

Figure 6.4 (a) Example network and (b) the same network with an optimizing hidden
variable.

An example of an optimizing hidden variable is given in Figure 6.4. The three measured

attributes located at the top of each graph are strongly related to the measured attributes

at the bottom in both diagrams, but the network of Figure 6.4(b) is simpler. The optimizing

hidden variable H reduces the size of the network by removing the need for many edges

while not impacting the accuracy of the representation—the set of independences implied

by the two Bayesian networks are identical. Most hidden-variable-aware scoring methods

would choose Figure 6.4(b) over Figure 6.4(a).

Note that the class of distributions represented by both Bayesian networks in Figure 6.4

might be the same—an optimizing hidden variable was added to represent the same distri-

bution more efficiently. This is not a necessary condition for an optimizing hidden variable—

depending on the scoring method, the hidden variable may increase or decrease the number

of represented independences.

In contrast, most algorithms in the social sciences focus on searching for what we call

essential hidden variables.

Definition 6.2.8. Consider any distribution P with n attributes U represented by a faithful

Bayesian network B(U′,E) where U′ = U
⋃
{HE} for some hidden variable HE. If, for the

set of independences and dependences SB implied by B, ∀B′ ∈ {n attribute legal Bayesian

networks representing P without hidden variables} and independences and dependences SB′

www.manaraa.com

121

implied by that network B′, SB 6= SB′ and B is more faithful to P ‡ than B′, then HE is an

essential hidden variable.

Informally, an essential hidden variable is a hidden variable HE that, when added to the

visible attributes of a Bayesian network, induces a set of properties that cannot exist in any

network with the same number of visible attributes and no hidden variables. The primary

question of this chapter is: Can a set of independences be exactly represented by a network

with the same number of visible attributes and no hidden variable?

The essential quality of a hidden variable is derived from the fact that it does not merely

simplify the network—it represents the distribution more accurately than any network struc-

ture that lacks it. The essential hidden variable enables us to more closely approach a faithful

Bayesian network through correctly representing a larger number of independences from the

distribution correctly.

In Figure 6.3, H is an example of an essential hidden variable—no Bayesian network with

4 attributes can represent the independence and dependence relationships between attributes

1 through 4. Establishing that this is the case is one of the results of our algorithm (explained

in Section 6.3). We will call the structure of the network of Figure 6.3 the W-network and

define its edge characteristics as follows.

Definition 6.2.9. A W-network contains 4 measured attributes labeled as 1,2,3,4 and a

hidden variable H. It satisfies the directed edge constraints (H, 2), (H, 3), (1, 2), (4, 3), no

edge from H to 1 or from 1 to H, and no edge from H to 4 or from 4 to H.

We can also discuss the W-network structure in the context of Verma’s P-Network [55]

using a non-independence constraint characterization [15].

‡Although other criteria could be applied, we simply count the network representing more independences
and dependences of P correctly (equally weighted).

www.manaraa.com

122

Definition 6.2.10. The P-network is specified over visible attribute sets A, B, C, and D§

∑
B

[Pr(B | A = 0)Pr(D | A = 0,B,C = 0)− Pr(B | A = 1)Pr(D | A = 1,B,C = 0)] = 0∑
B

[Pr(D | A = 0)Pr(D | A = 0,B,C = 1)− Pr(B | A = 1)Pr(D | A = 1,B,C = 1)] = 0

If the sets A, B, C, and D contain only a single variable each, the Verma constraints

imply a 5-attribute network through a structure that is usually depicted as a W-network

with an extra edge (thus the “P”). This definition relies on non-independence constraints

and each variable having binary cardinality.

Note that essential hidden variables and optimizing hidden variables do not partition the

space of possible hidden variables. Addition of an essential hidden variable may result in an

increase in accuracy significant enough to justify adding the same hidden variable.

6.3 An Algorithm for Detecting Essential Hidden Variables

Given the theoretical significance of essential hidden variables, we performed experiments

exploring how hidden variables expand the power of Bayesian networks. The explorations

by Rusakov and Geiger [14; 48] focused on deriving new scoring functions to evaluate the

usefulness of hidden variables in a network. We instead pursue an investigation of when

hidden variables add representational power to the Bayesian network. This investigation

leads to a more concrete understanding of how Bayesian networks with hidden variables can

represent a wider variety of distributions.

6.3.1 Overview of the Algorithm

Our algorithm explores the space of graphs with essential hidden variables based on the

idea that a Bayesian network B of size n with one of its attributes hidden is sometimes

§The summation operator in this context denotes the removal of the variable summed over by adding up
the probability of then normalizing over all of that attribute’s values (i.e.

∑
B means ”sum out B from these

probability calculations”).

www.manaraa.com

123

1 ⊥⊥ H 1 ⊥⊥ H | 3 1 ⊥⊥ H | 4 1 ⊥⊥ H | {3, 4}
1 ⊥⊥ 3 | H 1 ⊥⊥ 3 | 4 1 ⊥⊥ 3 1 ⊥⊥ 3 | {H, 4}
1 ⊥⊥ 4 1 ⊥⊥ 4 | 2 1 ⊥⊥ 4 | 3 1 ⊥⊥ 4 | H
1 ⊥⊥ 4 | {2, H} 1 ⊥⊥ 4 | {3, H} 1 ⊥⊥ 4 | {2, 3, H}
2 ⊥⊥ 4 2 ⊥⊥ 4 | H 2 ⊥⊥ 4 | 1 2 ⊥⊥ 4 | {H, 3}
2 ⊥⊥ 4 | {1, H} 2 ⊥⊥ 4 | {1, H, 3}
H ⊥⊥ 4 H ⊥⊥ 4 | 1 H ⊥⊥ 4 | 2 H ⊥⊥ 4 | {1, 2}

Table 6.2 Complete list of independences in the Bayesian network appearing in Fig-
ure 6.3.

more powerful than any Bayesian network of size n − 1. This happens when B represents

an underlying distribution that no network of size n− 1 can represent—the essential hidden

variable then has an impact on the visible attributes that cannot be duplicated with n − 1

attributes (and no hidden variable).

Given a Bayesian network B of size n (using as an example Figure 6.3, the W-network,

which is a network of size 5), the algorithm proceeds as follows: we assume that B is faithful

to the domain of interest so D-separation rules are applied to generate the complete set of

independences IB present in B. We then choose a single attribute H to hide by removing

all independences in IB referring directly to H. Note that, crucially, some independences

generated by the d-separation rules do not directly refer to H but nonetheless rely on H’s

presence and these are left in IB. Thus, while no independence is allowed to include H, the

d-separation rules may allow H to influence the independences B represents.

For the network in Figure 6.3, Table 6.2 contains the complete list of independences. The

list with independences not directly referring to H is IB = {(1 ⊥⊥ 3), (1 ⊥⊥ 4), (1 ⊥⊥ 3 | 4),

(2 ⊥⊥ 4), (1 ⊥⊥ 4 | 2), (1 ⊥⊥ 4 | 3), (2 ⊥⊥ 4 | 1)}.

We then generate all Bayesian networks of size n − 1 (referred to collectively as the

“smaller networks”) and compare the sets of independences represented by each smaller

network to IB: if the two sets do not match exactly, we continue to the next network of size

www.manaraa.com

124

3

4 4

32

1

(b)

2

1

(a)

Figure 6.5 Example networks of size 4.

n− 1. If the set of independences generated by some smaller network and IB match exactly,

we conclude that H is not an essential hidden variable and try hiding a different attribute

as a possible hidden variable in B. If we examine all networks of size n− 1 without finding

a smaller network that generates exactly IB, we can conclude by exhaustion that H is an

essential hidden variable because any probability distribution generating IB requires H to

generate a faithful Bayesian network.

Continuing our example of the W-network, consider the networks of size 4 depicted in

Figure 6.5. Amongst other differences between the independence sets of these two networks

and the W-network (Figure 6.3), the network in Figure 6.5(a) does not have independence

(2 ⊥⊥ 4) while Figure 6.5(b) has the extra independence (2 ⊥⊥ 3 | 4). Thus these two networks

are rejected as matches for the distribution the W-network represents. The algorithm then

continues to examine all networks of size 4 to match the independences generated by each

network to IB. In this example, IB is not generated by any network of size 4.

Algorithm 5 presents the pseudocode that generalizes this search procedure to examining

all networks of size n for hidden variables.

6.3.2 Optimizations

The main problem with Algorithm 5 is that it runs in exponential time—the number

of possible directed, acyclic graphs over n variables f(n) is characterized by the recursion

www.manaraa.com

125

Algorithm 5 Basic Hidden Variable Detection Algorithm.

1: for each network B of size n do
2: L = ∅
3: Generate the set of independences in B, I
4: for each attribute h in the network B do
5: Remove any independences mentioning of h from I to generate Ih
6: for each network B′ of size n− 1 do
7: Generate the independences in B′, I ′

8: if Ih == I ′ then
9: h is not an essential hidden variable, break and try another h

10: end if
11: Add (h,B) to L
12: end for
13: end for
14: Output L
15: end for

f(n) =
∑n

i=1(−1)i+1
(
n
i

)
2i(n−i)f(n− i) [47] and, asymptotically, f(n) ∈ O(2n

2−2). The log of

this function appears in Figure 6.6 as the solid curve.

We now discuss a few optimizations that leads to larger networks being processed more

efficiently. The major optimizations of memorizing independences, graph isomorphism usage,

and independence isomorphism usage are discussed below.¶ After all the optimizations are

explained, a revised version of Algorithm 5 including optimization detail is presented.

6.3.2.1 Memorizing independences

The simplest approach to optimizing the run time of any algorithm with repetition is to

expand the amount of space used by the algorithm: by memorizing independence information

about all of the networks of size n − 1, the innermost “for” loop of Algorithm 5 can be

executed very quickly for each network of size n. However, this is only a partial solution,

as the independences of the complete set of networks of size 7 or larger cannot be held

¶A fourth optimization, testing for connected components in the graph, was found to result in no efficiency
gain [42] so it has been omitted from this discussion.

www.manaraa.com

126

Lo
g

of
 th

e
N

um
be

r o
f P

os
sib

le
 D

A
G

s

1 2 3 4 5 6 7 8

0

5

10

15

20

25

Size of the Graph

Figure 6.6 Graph of the size of any directed, acyclic graph (DAG) against the log of the
number of possible DAGs (solid line) and number of non-isomorphic possible
DAGs (dotted line).

www.manaraa.com

127

in memory, requiring that we instead memorize as many as we can then recalculate the

independences corresponding to the remaining smaller networks for each large network.

6.3.2.2 Graph Isomorphism Equivalence Classes

A more fundamental alteration to Algorithm 5 is to restrict ourselves to testing Bayes-

ian networks that are not graph isomorphic to any previously-examined Bayesian network.

Algorithm 5 tests several networks in the same graph isomorphism class. For example, if

attribute 0 was discovered to be a hidden variable in a 5 vertex graph (as in the W-network,

Figure 6.3), attribute 1 would be a hidden variable in the network where the identities of 0

and 1 are switched, attribute 2 when 0 and 2 are switched, etc. To illustrate the difference in

the number of graphs that need to be tested, Figure 6.6 presents the logarithm of the total

number of directed acyclic graphs of each size (from [47]) with the number of isomorphism

classes (from [33]).

By only testing one graph from each isomorphism class, we can save a significant amount

time in both loops of Algorithm 5—the search space of both large and small networks is

greatly reduced by examining only graph non-isomorphs. Unfortunately, this reduction in

the search space is only feasible up to graphs of size 8 because the problem of efficiently

discovering all graph isomorphism classes is slow—it is suspected to not be in P [35]. Also,

while the optimization results in an increasing reduction in the number of networks tested as

number of attributes increases, isomorphism still only results in a small reduction in number

of graphs. As we can see from Figure 6.6, the number of non-isomorphic graphs of size n is

approximately the total number of graphs of size n− 1.

The algorithm generates graph isomorphisms by reading graphs of size 8 or less from

files generated previously by McKay’s NAUTY algorithm [34]. NAUTY is acknowledged as

the fastest overall graph automorphism and isomorphism detection algorithm with tight run

time bounds of O(n2) and Ω(2n) for the best and worst case (respectively) of processing a

www.manaraa.com

128

graph of size n.‖

With the testing of only non-graph-isomorphic Bayesian networks, it became necessary

to be able to determine if two sets of independences are isomorphic. The labeling used in the

larger network and the labeling used in the smaller network may differ but the independences

could be the same when labels are permuted differently.

Two sets of independences (one from the larger network and one from a smaller network)

are tested for equivalence in the following way:

1. Verify that each set has the same cardinality.

2. See if the independences match without altering any labels.

3. Make sure the same number of attributes are in evidence for each corresponding in-

dependence. For example, if one independence set has 3 independences and each

independence has 2 attributes in evidence, the other independence set must have 3

independences with 2 attributes in evidence also.

4. Recursively try every possible relabeling of vertices in one independence set to match

the other set. Although this brute force algorithm takes O(n!) time to verify there is

no such relabeling, the probability that two non-matching sets will make it to this step

is low so, in practice, this step rarely needs to be executed and, if run, usually results

in quickly finding a mismatch.

Algorithm 6 incorporates all of the above optimizations.

6.3.2.3 Neapolitan’s DetermineFaithful

Taking a different approach from the previous optimizations, instead of checking each

network B′ of size n − 1, we use DetermineFaithful to discover if there is a B′ of size

‖See [35], Theorems 5.2 and 6.2, for details.

www.manaraa.com

129

1: Seen = ∅
2: Seensm = ∅
3: for each network B of size n not isomorphic to a graph in Seen do
4: Add B to Seen
5: L = ∅
6: Generate the set of independences in B, I
7: for each attribute h in the network B do
8: Remove any independences mentioning of h from I to generate Ih
9: for each network B′ of size n− 1 not isomorphic to a graph in Seensm do

10: Add B′ to Seensm
11: Generate the independences in B′, I ′

12: if Ih == I ′ then
13: h is not an essential hidden variable, break and try another h
14: end if
15: Add (h,B) to L
16: end for
17: end for
18: Output L
19: end for

Algorithm 6 Algorithm for Hidden Variable Detection with Optimizations.

www.manaraa.com

130

n−1 that is faithful to the distribution represented by Ih. This will result in the same set of

conclusions [39] but it is not clear whether this method will be any faster than Algorithm 6.

This approach is implemented as Algorithm 7.

1: Seen = ∅
2: Seensm = ∅
3: for each network B of size n not isomorphic to a graph in Seen do
4: Add B to Seen
5: L = ∅
6: Generate the set of independences in B, I
7: for each attribute h in the network B do
8: Remove any independences mentioning of h from I to generate Ih
9: if DetermineFaithful is successful with input Ih then

10: h is not an essential hidden variable, break and try another h
11: end if
12: Add (h,B) to L
13: end for
14: Output L
15: end for

Algorithm 7 Algorithm for Hidden Variable Detection with DetermineFaithful.

6.3.3 Experimental Results

The goal of the experiments is to discover what conditions will always hold around es-

sential hidden variables by analyzing the set of Bayesian network and hidden variable pairs

returned by Algorithm 6. If a set of edge or independence constraints holds in the neighbor-

hood of every essential hidden variable, future work may be able to prove these constraints

holds in all distributions, implying an essential hidden variable. Other algorithms may then

be able to exploit these experimentally verified constraints to find essential hidden variables

through sets of local tests.

The algorithms were implemented in Java 1.4.2 on a two-processor 2.8 Ghz Xeon com-

puter with 2 Gb of RAM.

www.manaraa.com

131

6.3.3.1 Edge Test Results

Tests were done to find out if the edges of the graph around the essential hidden variable

conformed to any set of edge constraints. The constraints sought required edges to or from

the essential hidden variable, to or from attributes near the hidden variable, and/or required

some edges to not exist in the graph. We used the graph isomorphism subprocedures to find

out if particular edge sets held in every graph with an essential hidden variable.

It was found that the subset of the edge constraints given in the definition of W-networks

(Definition 6.2.9) held around all essential hidden variables. This means that the W-network

is always found embedded in a network with an essential hidden variable and specifically that

the hidden variable was always at the apex of the middle peak in the “W” of the W-network.

6.3.3.2 Independence Test Results

Various sets of independence constraints were given to the algorithm to test against each

network with an essential hidden variable. These were given as independences or dependen-

cies between attributes—the hidden variable was not included in these tested properties in

order to produce results that generalize more easily to an empirical test.

A set of independence constraints that we attempted to verify was (1 ⊥⊥ 3 | 4), (1 6⊥⊥ 3 | 2),

(1 6⊥⊥ {2, 4}), and (2 ⊥⊥ 4 | 1). This set held in both networks of size 5 that had an essential

hidden variable (see Fig. 6.7 below) but did not hold in all networks of size 6 or higher with

an essential hidden variable. In fact, no set of independence constraints that we tried held

in networks of size 6 or larger. This indicates that it may not be possible to characterize

essential hidden variables through independences among the visible attributes.

6.3.3.3 Summary and Examples

Table 6.3 displays the full count of all networks with hidden variables as well as average

run times for Algorithms 5, 6, and 7. Some algorithm runs could not be completed in 36

www.manaraa.com

132

H H

H H H H

H HH

H

H

H

H
H

H H

Size 5:

Size 6:

Size 7:

Figure 6.7 Examples of Bayesian networks with essential hidden variables of size 5,
6, and 7. Each node marked with an H was drawn separately from the
network—multiple hidden variables were not tested simultaneously.

www.manaraa.com

133

Table 6.3 Average Running Time of EHV Detection Algorithms (seconds).

Size Alg Num Nets Num HVs Median Time Avg Time SD
4 5 543 0 0 0 0.001
4 6 31 0 0.001 0.002 0.003
4 7 31 0 0.001 0.001 0.002
5 5 29280 100 0.038 0.04 0.016
5 6 303 2 0.001 0.001 0.001
5 7 303 2 0.001 0.002 0.001
6 5 > 54161 > 2185 1.731 2.392 1.922
6 6 5985 156 0.008 0.01 0.008
6 7 5985 156 0.005 0.006 0.002
7 5 > 800 > 67 7.542 162.010 397.395
7 6 > 41826 > 3815 2.819 3.098 2.035
7 7 243669 16103 0.019 0.021 0.009
8 5 > 0 > 0 0 0 0
8 6 > 39222 > 3710 2.838 3.151 2.106
8 7 > 2450470 > 403852 0.053 0.054 0.015

hours (indicated by the > X notation for sizes; time data from the last time output was

given in the last 3 columns in Table 6.3). Note that the results for incomplete analysis

will be biased towards smaller, simpler graphs on average (as graphs with fewer edges are

tested first) so the timing information will be slightly lower than true values. Performance

on graphs of size 9 and higher is not reported as preparation to process these graphs took

longer than the time allowed (over 36 hours). Test times for Algorithms 6 and 7 do not

account for the time spent to generate the isomorphism classes of graphs — this was 0.08

seconds for size 6, 2.2 seconds for size 7, and 260 seconds for size 8 (for smaller graphs,

time was negligable and, for larger graphs, over a day was taken). Note in particular that

Algorithm 7 is faster than Algorithm 6 so DetermineFaithful [39] is recommended for

future work in this area.

Some examples of graphs discovered with essential hidden variables of size 5, 6, and 7

are given in Figure 6.7. Recall that each hidden variable discovered in a network of size n is

discovered predicated on the other n− 1 attributes being visible. What appears to indicate

www.manaraa.com

134

multiple hidden variables in fact indicates that the other hidden variables are added back to

the network as visible attributes before the next hidden variable is tested.

6.3.4 Integration of Results with Previous Research

The algorithm we devised to discover essential hidden variable resembles that of the

method of vanishing tetrad differences [55] in that we will examine independences between

the visible attributes to derive essential hidden variables. It differs in that our methods do

not rely on the variables being continuous or in a linear relationship to one another but is

limited to essential hidden variables discoverable through independence relations.

As no independence-based constraints on the distribution containing an essential hidden

variable were found, the non-independence characterization discussed in Verma’s P Network

(Definition 6.2.10) might provide another set of probabilistic properties to characterize essen-

tial hidden variables. However, it is not clear how these constraints would generalize for gen-

erating essential hidden variables in larger networks. A first step to finding this relationship

would be equipping the current algorithm with the ability to test non-independence-based

constraints.

Models with fewer than two links between hidden and measured attributes must intro-

duce a correction factor (based on the number of measured attributes) to avoid asymptotic

divergence of the optimizing score [48]. As the W-Network has exactly two links between

the hidden variable and the visible attributes, this points to a possible connection of essen-

tial hidden variables to networks that were found cause score evalution algorithms to not

converge [48].

The algorithm proposed in [39] was tested indirectly via the DetermineFaithful al-

gorithm being used as a subprocedure in Algorithm 7. While all algorithms ran quickly for

small sizes, Algorithm 7 was the fastest while still generating equivalent results to the other

algorithms. However, we should note that the algorithms proposed to find causality [39] (es-

www.manaraa.com

135

pecially while searching for embedded independences) are not as flexible as the algorithms

proposed here. For example, it would be difficult to use those algorithms to find interactions

between hidden variables.

6.3.5 Conclusions Based on the EHV Detection Algorithms

Our experiments show that networks of the sizes examined all contain a subset of the edges

and non-edges present in a W-network embedded around the hidden variable. Precisely all

the edges that are and are not allowed and what this implies for the independences between

measured attributes has yet to be determined. However, if examining all the networks of a

certain size is required, significant optimization will be needed to answer these questions in

a reasonable time frame.

www.manaraa.com

136

APPENDIX A. MRCA Simulator

This appendix is simply a copy of commented Java 1.6 code for a MRCA simulator. Code

can be found at http://www.cs.iastate.edu/ patterbj/diss.php#simulator .

www.manaraa.com

137

APPENDIX B. MRCA Construction Rules for Y > X2

A complete listing of all the rules needed to MRCA compute the region X = [(x, y) ∈

[0, 1]2 | y > x2] can be found at http://www.cs.iastate.edu/ patterbj/diss.php#construction

.

www.manaraa.com

138

APPENDIX C. Computation of In-Place MRCA Rules for

Rational Lines

The code found at http://www.cs.iastate.edu/ patterbj/diss.php#inplace constructs a

graphical user interface for computing rules sets to color any region delimited by a rational

line. This code uses the code given in Appendix A.

www.manaraa.com

139

BIBLIOGRAPHY

[1] N. A., “Linear automaton transformation,” Proceedings of the American Mathematical

Society, vol. 9, pp. 541–544, 1958.

[2] P. G. Bergmann, Introduction to the Theory of Relativity. Dover Publications, 1976.

[3] J. Binder, D. Koller, S. Russell, and K. Kanazawa, “Adaptive probability networks with

hidden variables,” Machine Learning, vol. 29, pp. 213–244, 1997.

[4] V. Brattka and K. Weihrauch, “Computability on subsets of Euclidean space I: Closed

and compact subsets,” Theoretical Computer Science, vol. 219, pp. 65–93, 1999.

[5] M. Braverman, “On the complexity of real functions,” in Forty-Sixth Annual IEEE

Symposium on Foundations of Computer Science, 2005, pp. 155–164.

[6] M. Braverman and S. Cook, “Computing over the reals: Foundations for scientific

computing,” Notices of the AMS, vol. 53, no. 3, pp. 318–329, 2006.

[7] A. Burks, Essays on Cellular Automata. Univeristy of Illinois Press, 1970.

[8] L. Carroll, Alice’s Adventures in Wonderland. Project Gutenberg, 2008. [Online].

Available: http://www.gutenberg.org/ebooks/11

[9] G. J. Chaitin, “On the length of programs for computing finite binary sequences: sta-

tistical considerations,” Journal of the ACM, vol. 16, pp. 145–159, 1969.

http://www.gutenberg.org/ebooks/11

www.manaraa.com

140

[10] ——, “On the number of n-bit strings with maximum complexity,” Applied Mathematics

and Computation, vol. 59, pp. 97–100, 1993.

[11] B. Copeland, “Accelerating Turing machines,” Minds and Machines, vol. 12, pp. 281–

301, 2002.

[12] A. Ehrenfeucht, R. Parikh, and G. Rozenberg, “Pumping lemmas for regular sets,”

SIAM Journal of Computing, vol. 10, pp. 536–541, 1981.

[13] A. Einstein, Relativity: The Special and General Theory. New York, NY: H. Holt and

Company, 1916.

[14] D. Geiger, D. Heckerman, H. King, and C. Meek, “Stratified exponential families:

Graphical models and model selection,” Microsoft Research, Technical Report MSR-

TR-98-31, 1998.

[15] D. Geiger and C. Meek, “Graphical models and exponential families,” in Proceedings of

the 14th Conference on Uncertainty in AI, 1998, also Microsoft Tech Report MSR-TR-

98-10.

[16] D. Griffeath and C. Moore, New Constructions in Cellular Automata. USA: Oxford

University Press, 2003.

[17] A. Grzegorczyk, “Computable functionals,” Fundamenta Mathematicae, vol. 42, pp.

168–202, 1955.

[18] J. D. Hamkins and A. Lewis, “Infinite time Turing machines,” Journal of Symbolic

Logic, vol. 65, no. 2, pp. 567–604, 2000.

[19] M. J., “Finite automata and the representation of events,” Wright Patterson AFB,

Dayton, Ohio, Tech. Rep. 57-624, 1957.

www.manaraa.com

141

[20] J. Jaffe, “A neccessary and sufficient pumping lemma for regular languages,” SIGACT

News, vol. 10, pp. 48–49, 1978.

[21] R. Kiester and K. Sahr, “Planar and spherical hierarchical multi-resolution cellular

automata,” Computers, Environment, and Urban Systems, vol. 32, no. 3, pp. 204–213,

2008.

[22] K. Ko and H. Friedman, “Computational complexity of real functions,” Theoretical

Computer Science, vol. 20, pp. 323–352, 1982.

[23] K.-I. Ko, Complexity Theory of Real Functions. Boston: Birkhäuser, 1991.

[24] A. N. Kolmogorov, “Three approaches to the quantitative definition of ‘information’,”

Problems of Information Transmission, vol. 1, pp. 1–7, 1965.

[25] D. Kozen, Automata and Computability. New York, NY: Springer-Verlag, 1997.

[26] C. Kreitz and K. Weihrauch, “Complexity theory on real numbers and functions,”

in Theoretical Computer Science, ser. Lecture Notes in Computer Science, vol. 145.

Springer, 1982, pp. 165–174.

[27] D. Lacombe, “Extension de la notion de fonction recursive aux fonctions d’une ow

plusiers variables reelles, and other notes,” Comptes Rendus, 1955, 240:2478-2480;

241:13-14, 151-153, 1250-1252.

[28] J. Lathrop, J. Lutz, and B. Patterson, “Multi-resolution cellular automata for real

computation,” in Proceedings of Computability in Europe 2011, 2011.

[29] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications,

3rd ed. New York, NY: Spring Science + Business Media, LLC, 2008.

[30] L. R. Lisagor, “The banach-mazur game,” translated in Math. USSR Sbornik, vol. 38,

pp. 201–206, 1981.

www.manaraa.com

142

[31] J. H. Lutz, “Category and measure in complexity classes,” SIAM Journal on Computing,

vol. 19, pp. 1100–1131, 1990.

[32] H. V. McIntosh, One Dimensional Cellular Automata. United Kingdom: Luniver Press,

2009.

[33] B. McKay, “Combinatorial data. http://cs.anu.edu.au/people/bdm/data/digraphs.html,”

p. http://cs.anu.edu.au/people/bdm/data/digraphs.html, 2004.

[34] ——, “The nauty page. http://cs.anu.edu.au/people/bdm/nauty/,” p.

http://cs.anu.edu.au/people/bdm/nauty/, 2004.

[35] T. Miyazaki, “The complexity of mckay’s canonical labeling algorithm,” in Conference

on Discrete Mathematics and Computer Science (DIMACS), Einkelstien and Kantor,

Eds., vol. 28, 1997.

[36] W. Myrvold, “The decision problem for entanglement,” in Potentiality, Entanglement

and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony, M. S. J.

Cohen, R.S.; Horne, Ed. Dordrecht and Boston: Kluwer Academic Publishers, 1997,

pp. 177–190.

[37] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Jour-

nal de Physique I, vol. 2, no. 12, pp. 2221–2229, 1992.

[38] K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. Barrett, “Transims traffic

flow characteristics,” Los Alamos Unclassified Report, Los Alamos National Laboratory,

Tech. Rep. 97-3530, 1997.

[39] R. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2003.

[40] M. W. Parker, “Undecidability in Rn: Riddled basins, the KAM tori, and the stability

of the solar system,” Philosophy of Science, vol. 70, pp. 359–382, 2003.

www.manaraa.com

143

[41] ——, “Three concepts of decidability for general subsets of uncountable spaces,” The-

oretical Computer Science, vol. 351, pp. 2–13, 2006.

[42] B. Patterson, “Essential hidden variables: An introduction and novel algorithm for

detection,” Masters of Science, Iowa State University, 2004.

[43] B. Patterson and D. Margaritis, “Essential hidden variables: An exploratory algorithm,”

in Proceedings of the 2nd Indian International Conference on Artificial Intelligence,

2005, pp. 2649–2667.

[44] J. Pearl, “A constraint-propagation approach to probabilistic reasoning,” in Proceedings

of the 2nd Conference on Uncertainty in AI, 1986, pp. 357–370.

[45] ——, Probabilistic Reasoning in Intelligent Systems, 2nd ed. San Francisco, CA: Mor-

gan Kaufmann Publishers, Inc., 1988.

[46] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics. Springer-

Verlag, 1989.

[47] R. W. Robinson, “Counting labelled acyclic graphs,” in New Directions in the Theory

of Graphs, F. Harary, Ed. New York, New York: Academic Press, Inc., 1971, pp.

239–273.

[48] D. Rusakov and D. Geiger, “Asymptotic model selection for naive bayesian networks,”

in Proceedings of the 18th Conference on Uncertainty in AI, 2002, pp. 438–445.

[49] K. Sahr, D. White, and A. Kimerling, “Geodesic discrete global grid systems,” Cartog-

raphy and Geographic Information Science, vol. 30, no. 2, p. 121134, 2003.

[50] M. Schaller and K. Svozil, “Scale-invariant cellular automata and self-similar Petri

nets,” The European Physical Journal B, vol. 69, p. 297311, 2009. [Online]. Available:

http://dx.doi.org/10.1140/epjb/e2009-00147-x

http://dx.doi.org/10.1140/epjb/e2009-00147-x

www.manaraa.com

144

[51] J. Schiff, Cellular Automata: A Discrete View of the World. USA: Wiley-Interscience,

2008.

[52] H. A. Simon, “Spurious correlation: A causal interpretation,” Journal of the American

Statistics Association, vol. 49, no. 267, pp. 467–479, 1954.

[53] R. J. Solomonoff, “A formal theory of inductive inference,” Information and Control,

vol. 7, pp. 1–22, 224–254, 1964.

[54] P. V. Spade, “Ockham’s razor. http://plato.stanford.edu/archives/fall2002/entries/ockham/#4.1,”

2002.

[55] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, 2nd ed.

Cambridge, MA: The MIT Press, 2000.

[56] D. Stanat and S. Weiss, “A pumping theorem for regular languages,” SIGACT News,

vol. 14, pp. 36–37, 1982.

[57] A. M. Turing, “On computable numbers with an application to the Entscheidungsprob-

lem,” Proc. London Math. Soc. (2), vol. 42, pp. 230–265, 1936.

[58] ——, “On computable numbers with an application to the Entscheidungsproblem. A

correction,” Proc. London Math. Soc. (2), vol. 43, pp. 544–546, 1936.

[59] ——, “Systems of logic based on ordinals,” Ph.D. dissertation, Princeton, Princeton,

New Jersey, USA, 1938.

[60] S. Varricchio, “A pumping condition for regular sets,” SIAM Journal of Computing,

vol. 26, pp. 764–771, 1997.

[61] K. Weihrauch, Computability. New York, NY, USA: Springer-Verlag New York, Inc.,

1987.

www.manaraa.com

145

[62] ——, Computable Analysis. An Introduction. Springer-Verlag, 2000.

[63] S. Wolfram, A New Kind of Science. Champaign, Illinois, USA: Wolfram Media, 2002.

	2011
	Three topics in the theory of computing: Multi-resolution cellular automata, the Kolmogorov complexity characterization of regular languages, and hidden variables in Bayesian networks
	Brian Patterson
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	1. INTRODUCTION
	1.1 Multi-Resolution Cellular Automata and Computable Analysis
	1.2 An MRCA Simulator
	1.3 Kolmogorov Complexity and Regular Languages
	1.4 Essential Hidden Variables in Bayesian Networks

	2. PRELIMINARIES
	3. MULTI-RESOLUTION CELLULAR AUTOMATA AND COMPUTABLE ANALYSIS
	3.1 Real Computation and Small Boundaries
	3.2 Introduction to MRCAs
	3.3 MRCA Characterization of Computability
	3.4 MRCA Characterization of Polynomial-time Computability
	3.5 Similar Work to the MRCA

	4. MULTI-RESOLUTION CELLULAR AUTOMATA SIMULATION
	4.1 Introduction to the MRCA Simulator
	4.1.1 Simulator Interface
	4.1.2 Simulator Rule File Format

	4.2 Computing Sets with the MRCA Simulator
	4.2.1 Requirements on the Input CA
	4.2.2 Changes to Generate A Computational Unit
	4.2.3 Additional Rules to Complete the Construction
	4.2.4 Simplifications for Halting Input CAs

	4.3 An Example of MRCA Computation
	4.3.1 Input One-dimensional CA
	4.3.2 Rotation and Coloring
	4.3.3 Fission and Creation of Child Pinwheels of Computational Units

	4.4 In-Place MRCA Computation

	5. KOLMOGOROV COMPLEXITY AND REGULAR LANGUAGES
	5.1 Kolmogorov Complexity Results
	5.2 The Regularity Theorem
	5.3 Usage Examples
	5.4 Comparison with Pumping Lemmas

	6. ESSENTIAL HIDDEN VARIABLES IN BAYESIAN NETWORKS
	6.1 Motivating Example
	6.2 Bayesian Network Notation
	6.2.1 Basic Graph Terminology
	6.2.2 Independence Notation
	6.2.3 Bayesian Network Formalisms
	6.2.4 Hidden Variables

	6.3 An Algorithm for Detecting Essential Hidden Variables
	6.3.1 Overview of the Algorithm
	6.3.2 Optimizations
	6.3.3 Experimental Results
	6.3.4 Integration of Results with Previous Research
	6.3.5 Conclusions Based on the EHV Detection Algorithms

	A. MRCA Simulator
	B. MRCA Construction Rules for Y > X2
	C. Computation of In-Place MRCA Rules for Rational Lines
	BIBLIOGRAPHY

